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Abstract

In recent years, deep learning techniques trained on increasingly large datasets
have brought about significant improvements in scene recognition and image
classification. However, the performance of these novel techniques have not been
extensively studied on small datasets, with many common deep learning models
requiring millions of images to converge. Many of these large models have been
pre-trained on large datasets for image recognition and classification tasks. These
models are likely to have richer features than shallower light weight models due
to the volume of training data, despite their different training objectives. In this
paper, we present a novel approach that combines existing pre-trained feature
extractors with light weight classifiers. These models are evaluated on two novel
datasets: Places100, a subset of the Places365 scene classification dataset and
Open-Places100, a derivative of Places100 to study a model’s ability to differentiate
between in-domain data and open-set examples. We first establish a baseline using
ResNet-18 trained and evaluated on both datasets, measuring the accuracy of our
end-to-end trained baseline. Motivated by the poor performance baseline, we
propose using pretrained feature-classifier pairs to improve upon the baseline. We
study VIT, CLIP, and ResNet pretrained features and pair these with neural network,
SVM, and XGBoost classifiers. Lastly, since each set of pretrained feature-classifier
pairs has unique failure modes, we propose a self-training framework to use the
majority vote of our nine feature-classifier pairs to weakly label a larger dataset.
The results show that our self-trained network improves performance compared
to the pretrained feature - lightweight classifier combinations trained on small
datasets, showing promise for semi-supervised applications where large sets of
unlabeled data are available. Our code is available on Github.

1 Introduction

Supported by the improvement of computer hardware resources, deep learning techniques developed
in recent years have seen tremendous successes in scene recognition tasks with large datasets. Trained
with millions of images, these convolutional neural networks have demonstrated accuracies above
50% [11].

However, not only do these techniques rely on extensive computational resources, their superior
performance has not yet been verified with small datasets. In fact, many existing deep learning
techniques tend not to perform well when the amount of training data is below a certain—usually
high—threshold [2].

To evaluate this claim, we create a subset of the Places365 dataset with 100 classes, and 20 images per
class. We train on 10 images per class and evaluate on the held out 10 images in each class. We train
a ResNet-18 model end-to-end on a small subset of 1,000 images sampled from the Places100 dataset
[12]. As shown in Fig. 1, after approximately 50 training epochs, the training accuracy plateaues at
about 11%, significantly lower than the above 50% accuracy that similar models achieved after trained
with millions of images. The ResNet-18 model is unable to learn a robust feature representation given
the limited data.
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On the other hand, light-weight classic classifiers, such as multilayer perception (MLP), support
vector machine (SVM), and XGBoost have demonstrated reasonable classification accuracy for small
dataset problems. For scenarios where training data and computational resources are limited, a
complementary relationship appears to exist between the heavy-weight deep learning techniques and
the light-weight classic classifiers.

In order to generate more robust features, we look to large scale pretrained models. Some exemplars
among these include the Residual Neutral Network (ResNet) [6], the Vision Transoformer (ViT) [4],
and the Contrastive Language-Image Pre-Training (CLIP) [9]. All these three techniques leverage
web-scale datasets to pre-trained models that convert complex internal information of images—such
as RGB colors—into machine-learned feature representations. Given these feature representations,
we can train light weight classifiers to address complete the scene recognition tasks.

Given that pre-trained models associated with these deep learning techniques are available to the
research community, we are interested in exploring this complementary relationship by cascading
pre-trained models and light-weight classifiers, while regarding the pre-trained models as “fixed
feature extractors". We expect these combinations will yield satisfactory classification accuracy,
since the pre-trained models are trained with millions of examples, and act as the image-processing
feature extractors for the light-weight classifiers given their generalization power. More importantly,
these combinations could perform scene recognition well even with small datasets and limited
computational resources.

Figure 1: Baseline result: an empty ResNet-18 model trained on the Places100 dataset.

2 Data

We conduct our exploration of deep learning for small datasets with the Places365 dataset. The
original dataset containing more than ten million images classified into 365 classes [12]. To simulate
a small-data scenario, we constructed the Places100 dataset for our project. Places100 is a randomly
sampled subset of Places365 under uniform distribution. It contains 100 classes, 20 images per class,
hence 2,000 images in total. Note that this is only approximately 0.02% of the size of Places365. For
each class, 10 images are used for training and 10 for testing.

Additionally, we construct the Open-Places100 dataset. The purpose of this dataset is to explore
how our heavy-light cascaded approach performs with out-of-distribution classes. It is important
to detect anomalous inputs when deploying machine learning systems. The use of larger and more
complex inputs in deep learning magnifies the difficulty of distinguishing between anomalous and
in-distribution examples [7].

Specifically, Open-Places100 consists of the same images contents as Places100, but different labels.
Fifty classes are labeled as normal and are considered to be “known” classes. These classes are used
in the same way as the classes in Places100. The remaining fifty classes are labelled as one class,
called the “outlier” class. Within the outlier class, twenty-five classes or 250 images are used for
training (i.e. outlier exposure), and the remaining twenty-five classes are completely witheld for
testing. The known and unknown classes were chosen randomly from Places100.
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Figure 2: Sample images in the Places365 dataset

These datasets are suitable for our project given that they are sufficiently small and are fully annotated,
which is necessary for the supervising learning of the light-weight classifiers. Since these datasets are
randomly sampled under a uniform distribution, their biases should be negligible.

3 Related Work

In this section, we briefly introduce the deep learning models that we have used as image feature
extractors, namely, ResNet, ViT, and CLIP.

Residual Neural Network (ResNet). He et. al. proposed using identity mapping by short-
cuts to train deeper neural networks [6]. They find that “plain” deep networks have higher train and
test accuracy on image benchmarking datasets. He et. al proposed a solution by construction: if
added layers simply overparameterize the model, the added layers should learn identity mapping,
and the other layers are copied from the learned shallower model. The existence of this constructed
solution indicates that a deeper model should produce no higher training error than its shallower
counterpart. In order to facilitate such a learned model, Residual Networks explicitly encode identity
mappings. If the input is optimal, the learned weights are 0 and the value of the input is passed onto
the output. If the input is near optimal, the learned weights are small, allowing for small updates
(which are easily trainable). Further, these identity connections are parameter free, and serve as
gradient highways that preserve gradient in deeper models. Given the success of this simple model
architecture, we use variants of ResNet in our experimental evaluation. We use the ResNet-18 model
in our baseline experiments for learning from small datasets end-to-end and use ResNet-101 for
extracting fixed features for training shallow models.

Vision Transformer (ViT). Despite the success of transformers for natural language pro-
cessing tasks, transformers have not been widely used for computer vision applications. Dosovitskiy
et. al. suggests ways of preparing image-data for use in transformer encoders. Each image is
tokenized into n×n patches [4]. Each patch is flattened into an n×n vector. This vector is embedded
using a linear projection. This embedding vector is used as input to the transformer encoder. The
transformer encoder applies a combination of layer normalization, self-attention, and attention layers
to learn a non-linear combination of the input embeddings. Importantly, the key, query, and value
weight matrices used for the attention operators can learn convolutions but are not restricted to
just this function class. Ablation studies suggest that pretraining on very large datasets, including
JFT-300M, is critical for learning robust fixed features. We leverage the feature from the z0 embed-
ding at the Lth layer of the transformer encoder as our fixed feature for building lightweight classifiers.
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Contrastive Language-Image Pre-Training (CLIP). Current approaches for using deep
learning to train computer vision models is highly dependent on the availability of curated large-scale
datasets. However, such datasets are often only created (and have labels) for one task. This makes
it difficult to learn generic algorithms for image understanding. Often, methods trained on these
single purpose datasets are brittle (to adversarial attacks), and don’t generalize well in the real world.
Radford et. al suggest that, to create generalized image representations, we should train on a wide
variety of images with a wide variety of natural supervision that’s abundantly available on the internet
[9]. Importantly, Radford et. al. suggest not directly optimizing for any benchmark, but rather
optimizing for an image-text classification task. Given an image, CLIP predicts which out of a set of
32,768 randomly sampled text snippets, was paired with the image in the dataset. In order to solve
this task, CLIP models will need to learn to recognize a wide variety of visual concepts in images
and associate them with their names. As a result, CLIP models can be applied to nearly arbitrary
visual classification tasks. For instance, if the task of a dataset is classifying photos of “dogs” vs.
“cats”, CLIP can score which of the two descriptions is more likely to be paired with. CLIP closes
the “robustness” gap by up to 75%, while matching the performance of the original ResNet-50 on
ImageNet zero-sot without using any of the original 1.28 million labeled examples.

Using Pre-trained Models as Fixed Feature Extractors. The use of pretrained models is
widely adopted by the deep learning community. The approach of combining features extracted
from pre-trained deep learning models and other machine learning models have appeared in the
context of deep convolutional neural networks (CNN). [5] view features extracted from different
pre-trained CNNs as different "views" of the same training images. This perspective converts the
image clustering problem into a multi-view clustering problem. By combining these pre-trained
features, Guerin et. al are able to build complementary relationships between sets of images better
represent the original data, achieving improved results compared with methods using standard CNN
architectures alone. Similarly, [8] combined lightweight CNNs with transfer learning models to
perform the specific task of recognizing banknotes. Leveraging transfer learning to address the small
data problem, Linkon et. al used pre-trained deep learning models to augment their dataset, showing
that a combined approach produced similar recognition accuracy with the best previous records.

4 Methods

We first train a randomly initialized ResNet-18 model on the Places100 dataset as a baseline (Fig. 1).
Consistent with our expectation, the ResNet-18 model trained with limited data performs considerably
worse than a model trained with the original Places365 dataset [11]. This performance degradation
motivates our heavy-light cascading approach. Hence, we evaluate the three pre-trained deep
learning models—ResNet-101, ViT, and CLIP—as image feature extractors and the three light-weight
classifiers—MLP, SVM, and XGBoost—for scene recognition with the Places100 and the Open-
Places100 small datasets. In total, we formed nine such heavy-light combinations, as shown in Fig.
3. Specifically, to provide a viable solution that works with limited compute, we do not perform
backpropogation on the pre-trained models themselves. Rather, we use their penultimate layer for
feature extraction, and only train the light-weight classifiers with our small datasets. Moreover, we
train a second baseline, using a ResNet-18 model initialized with ImageNet weights. This baseline
result is intended to provide a comparison between our proposed heavy-light cascaded approach
and merely performing backpropagation within the entire deep learning model on a small dataset.
Although we find that this approach performs better than random initialization, it is still sigificantly
lower than training on the original Places365 dataset [11].

We evaluate the performance of each heavy-light combination using their respective training accuracy
for both the Places100 dataset and the Open-Places100 dataset. We believe that using each combina-
tion’s test accuracy as the evaluation metric sufficiently reflects these combinations’ performances on
scene recognition in our simulated small-data scenario.

Additionally, we evaluate how these combinations perform in outlier detection task, specifically
whether they are able to differentiate outlier classes that were not seen during training from the classes
that these models were trained on. Our assumption is that a traditional deep learning model will not
perform well on small datasets as these models lack the priors that are encoded in lighter models,
which are learned as the size of the data grows. However, pre-trained features could significantly
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improve the performance of our lightweight classifiers, due to the generalization power that the large
amounts of training data embed into the pre-train deep learning models.

In addition, we constructed the confusion matrices for the samples that the combinations misclassified
on the Places100 dataset. These confusion matrices reveal the source of mistakes for the nine
combinations, potentially enable a better understanding of the error modes. As shown in Figure r6,
the errors of the nine models are disjoint, indicating that we may be able to train a better model by
ensembling.

This motivates our final approach of self-training [10], which consisted of two steps. First, we
ensemble all of our nine models together, and predict class labels on an extended dataset of 1000
images/class for the 100 known classes. This dataset simulates a larger set of images that have not
been labeled, but that are still useful for training a larger neural network. To predict the class label of
one of these images, we take the majority vote of our models, breaking ties by taking the vote of the
ViT-NN model pair (our overall best performing model). Using this new dataset of 10,000 images,
we train a ResNet-18 model both from scratch and using pretrained weights, which we have shown
performs poorly with the smaller dataset.

Simply training a randomly initialized ResNet-18 model with these noisily labeled students achieves
30% accuracy, more than doubling the original result when training on the Places100 dataset. However,
we further modify the model to add CLIP features to the ResNet-18 latent features, further improving
performance by 30%.

Figure 3: Combinations of the models evaluated in this study

5 Results

Exploratory Data Analysis To visualize the extracted features from the images through ResNet, ViT
and CLIP, we randomly selected ten classes from the dataset and performed Principal Component
Analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE) visualization in 2D. Fig.
4 shows the results. Evidently, some classes such as bus-interior are better separated than others
as observed in PCA and t-SNE. Based on this preliminary exploration, it seems CLIP features best
cluster the images based on their labels. It is worth noting that both t-SNE and PCA are unsupervised
approaches, and we add in labels after clustering.

Results on Places100 Dataset Fig. 5 shows the test accuracy of the nine total combinations of
the pre-trained deep learning models and the light-weight classifiers on the Places100 dataset. We
also overlay the baseline result of a randomly initialized ResNet-18 model trained on the Places100
dataset(ResNet-18) as well as the test accuracy of a pre-trained ResNet-18 model trained on the
Places100 dataset (ResNet-18 w/ Pretraining) for comparison. The accuracy of the 3-layer MLP
(NN) as a light-weight classifier varies with different numbers of training epochs. This is because we
allow backpropagation of the MLP weights, while locking the weights of the pretrained deep learning
models. The other light-weight classifiers’ outputs (i.e. SVM [1] and XGBoost [3]) do not vary with
different numbers of training epochs. Hence, their accuracy is plotted as horizontal lines.

For all the three deep learning models we used as image feature extractors, unsurprisingly, the
3-layer MLP behaves as the best light-weight classifiers. Within at most 40 training epochs, all
the three combinations of pre-trained deep learning model and the MLP neural network achieved
above 50% testing accuracy. This result matches the accuracy records on the Places365 dataset for
end-to-end trained deep learning models. The next two best-performing light-weight classifiers are
SVM and XGBoost. The relative performances of these two light-weight classifiers alternate. With
pre-trained ViT, XGBoost’s testing accuracy is higher than that of SVM approximately 20% accuracy,
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Figure 4: Top row: Principal Component Analysis (PCA) of selected classes of pretrained model
features. For both ResNet and ViT, the first two PCs accounted for 18% of variances while for CLIP
features, first two PCs acounted for 15% of variances. Bottom row: t-distributed stochastic neighbor
embedding (t-SNE) visualization of the features.

Figure 5: Testing accuracies of all the nine heavy-light combinations trained on the Places100 dataset
along with the baseline results. The left, middle, and right images correspond to combinations with
pre-trained ResNet-101, ViT, and CLIP, respectively.

whereas with pretrained ResNet-101 and pre-trained CLIP, SVM outperforms XGBoost. Surprisingly,
SVM’s testing accuracy beats that of the MLP neural network with a pre-trained ResNet-101. The
performance of SVMs and XGBoost are more sensitive to the type of input features than MLPs.

All the nine heavy-light combinations yielded higher testing accuracy than our baseline result of the
randomly initialized ResNet-18 model trained on the Places100 dataset. Moreover, seven out of the
nine combinations—namely, ResNet-101 + MLP, ResNet-101 + SVM, ResNet-101 + XGBoost, ViT
+ MLP, ViT + XGBoost, CLIP + MLP, CLIP + SVM, CLIP + XGBoost—produced higher testing
accuracies than our baseline result of pre-trained ResNet-18 trained on the Places100 dataset. These
results align with our expectation that the pre-trained features significantly improve the performance
of the lightweight classifiers due to the large quantity of data that provide them with robust image
feature representations.

To better understand the source of mistakes for the nine combinations, we constructed confusion
matrices for each of the models. Fig. 5 shows the confusion matrices for each of the models. Of
note, we can observe that the misclassifications are different among different combinations. Hence,
a promising improvement based on this analysis is to further combine these cascaded heavy-light
models as ensemble models.

Results on Open-Places100 Dataset Fig. 7 shows the testing accuracy of the nine heavy-light
combinations trained on the Open and the self-trained models. Baseline model performed poorly in
this case, failing to predict outliers that did not exist in the training data. However, our proposed
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Figure 6: Confusion matrix for the nine heavy-light combinations and self-trained ResNet-18

models yielded surprisingly high accuracies within 10-20 epochs of training. We note that self-trained
models outperformed both our other proposed models and baseline with ResNet features, indicating
higher resilience to poor instance feature representation. Our heavy-light combinations performed
relatively poorly at this task, as well, achieving between 10% and 30% accuracy, significantly lower
than the standard setup numbers. We suspect this is due to the pre-training objective of the deep
classifiers being significantly different than the OpenSet task, making them less suited to generalize
to this task. Overall, the self-trained models performed the best out of all of our baselines and
heavy-light combinations, even at early training epochs.

Figure 7: The open-set testing accuracies for all nine heavy-light combinations. From left to right,
the pre-trained deep learning models are Resnet-101, ViT, and CLIP.

6 Discussion and Analysis

The most representative results in this study are the testing accuracy of the heavy-light combinations
on the Places100 dataset, as shown in Fig. 5. These results verify our assumption that the generaliza-
tion power granted by the enormous amounts of data used to train the pre-trained deep learning models
indeed complements the simplicity of the light-weight classifiers. Even without backpropagating
through the entire deep learning model, these heavy-light combinations attained similar and superior
performances compared with the baseline ResNet-18 model trained in an end-to-end manner. An
interesting phenomenon with the end-to-end trained ResNet-18 is that the pre-trained ResNet-18
with ImageNet weights produced lower testing accuracies as the number of training epochs increases
on the Places100 dataset. This could be caused by the small size of the Places100 dataset and the
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Feature-Extractor Model Accuracy
N/A ResNet-18 12.60%
N/A ResNet-18 (Pretrained) 42.20%
N/A ResNet-18 w/ Self-Training 60.40%
N/A ResNet-18 w/ Self-Training (Pretrained) 59.60%
CLIP NN 58.40%
CLIP KMeans 30.30%
CLIP SVM 55.70%
CLIP XGBoost 41.10%
ResNet-101 NN 49.00%
ResNet-101 KMeans 21.90%
ResNet-101 SVM 49.10%
ResNet-101 XGBoost 40.80%
VIT NN 59.30%
VIT KMeans 33.80%
VIT SVM 17.90%
VIT XGBoost 44.70%

Table 1: Best Accuracies for All Models on Standard Setup

Feature-Extractor Model Accuracy
N/A ResNet-18 49.50%
N/A ResNet-18 (Pretrained) 57.30%
N/A ResNet-18 w/ Self-Training 67.90%
N/A ResNet-18 w/ Self-Training (Pretrained) 67.80%
CLIP NN 67.10%
CLIP KMeans 16.40%
CLIP SVM 31.10%
CLIP XGBoost 22.50%
ResNet-101 NN 60.80%
ResNet-101 KMeans 12.40%
ResNet-101 SVM 26.10%
ResNet-101 XGBoost 22.80%
VIT NN 68.50%
VIT KMeans 16.00%
VIT SVM 9.30%
VIT XGBoost 25.00%

Table 2: Best Accuracies for All Models on Open-Places100 Setup

property that deep learning models such as ResNet-18 tends to overfit, hence large amounts of data
are required to compensate for the overfitting.

Our self-training model also outperformed our baseline models of ResNet-18 and ResNet-18 with
pretrained weights when evaluated at Epoch 100. These results verify that ensembling our nine
models together and using them to label simulated "unlabeled" data can enhance the overall quality
of training a ResNet model. We suspect the reason this model did not outperform our lightweight
classifiers is that 10,000 images is still far too small of a dataset. Typically, to train a deep model and
obtain meaningful results, one would need hundreds of thousands to millions of images in the train
set.

To understand the source of misclassifications in our self-trained model, we looked at the most
common label-prediction mismatch in Tab. 3 (ranked based on number of misclassifications). The
misclassification rate is calculated as the percentage of specific label-prediction mismatch in the set
of images of a label. We can note that all of the most common misclassifications seem to be tied
to label assignment arbitrariness. For instance,labels “Bedroom” and “Bedchamber” are synonyms
and the images in their respective classes do not show many distinguishing features from each other
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True Label Predicted Label Misclassification Rate
Food Court Dining Hall 60.0%
Pond Swamp 50.0%
Tree Farm forest Broadleaf 83.3%
Clean Room Storage Room 100.0%
Bar Discotheque 57.1%
Pier Boardwalk 66.7%
Bedroom Bedchamber 57.1%
Indoor Flea Market Storage Room 44.4%
Youth Hostel Bedroom 42.9%
Amusement Park Carrousel 33.3%

Table 3: Self-trained ResNet-18 Most Common Misclassifications

despite their different labels. As noted earlier, these class distinctness can be visualized with PCA
and t-SNE plots (Fig. 4). This explains a significant portion of the misclassifications from our models
and may also be interpreted that the models are not overfitting to specific labels but rather effectively
learning shared visual features in a labeled class.

Inconsistent with our assumption, the majority of heavy-light combinations performed poorly on the
Open-Places100 dataset. A closer look reveals that this outlier detection task is completely different
than the scene recognition task for which these deep learning models were pre-trained. In other
words, the pre-trained deep learning models could be unsuited for outlier detection task despite
their large training data because the class "outlier" never appeared during their training. Hence,
when cascaded with the light-weight classifiers, the image features extracted from the pre-trained
deep learning models are significantly less informative for the light-weight classifiers to identify the
outlier class. Yet, we note that the self-trained "student" network performed remarkably well with
the Open-Places100 setup, showcasing our self-training method’s ability to distill useful information
from the heavy-light combination models and achieve good performance even with this difficult task.

7 Conclusion

This study explored the scene classification problem with MIT Places365 dataset with two distinct
and novel approaches: pretrained feature-classifier combinations and a self-training framework. We
then evaluated these models on two types of datasets: standard 100 class subset of the Places365 and
the 50 known classes and 1 outlier class setup. Based on pre-trained feature extractors, we studied
the approach of training classification models that do not require large training datasets involved in
transfer learning or training from scratch. We showed that these models vastly outperformed the
baseline ResNet-18 model trained from scratch in the standard dataset. We also showed that the
self-trained ResNet with generated labels performed better in the standard set than any of the baseline
and feature-classifier combinations while performing similarly in the open-set setup, showing promise
for semi-supervised applications where large sets of labeled data are not available.
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