Neehar Peri

neeharperi.com

Education	
Ph.D in Robotics, Carnegie Mellon University 3D Perception In-The-Wild	Aug 2021 - Present
M.S in Robotics, Carnegie Mellon University Long-Tailed 3D Detection via Multi-Modal Fusion	Aug 2023
B.S. in Computer Engineering, University of Maryland - College Park QUEST Honors Program	May 2021
Conference Publications	
• Towards Learning to Complete Anything in LiDAR A Tacmaz, C Saltori, N Peri , T Meinhardt, RD Lutio, L Leal-Taixe, A Osep	Under Review
 Why is Sparse View Reconstruction Hard? Z Wang, J Tan, T Khurana[*], N Peri[*], D Ramanan 	Under Review
• Planning with Adaptive World Models for Autonomous Driving AB Vasudevan, N Peri , J Schneider, D Ramanan	ICRA 2025
• Neural Eulerian Scene Flow Fields	ICLR 2025
 K Vedder, N Peri, I Khatri, S Li, E Eaton, M Kocamaz, Y Wang, Z Yu, D Ramanan, J Pehserl Revisiting Few-Shot Object Detection with Vision-Language Models A Madan*, N Peri*, S Kong*, D Ramanan* 	NeurIPS 2024
 Shelf-Supervised Cross-Modal Pre-Training for 3D Object Detection M Khurana*, N Peri*, J Hays, D Ramanan 	CoRL 2024
• I Can't Believe It's Not Scene Flow!	ECCV 2024
 I Khatri*, K Vedder*, N Peri, D Ramanan, J Hays Better Call SAL: Towards Segmenting Anything in LiDAR A Osep*, T Meinhardt*, F Ferroni, N Peri, D Ramanan, L Leal-Taixe 	ECCV 2024
• ZeroFlow: Scaling Scene Flow via Distillation K Vedder, N Peri, N Chodosh, I Khatri, E Eaton, D Jayaraman, Y Liu, D Ramanan, J Hays	ICLR 2024
• Towards Long-Tailed 3D Detection N Peri , A Dave, D Ramanan [*] , S Kong [*]	CoRL 2022
• A Brief Survey of Person Recognition at a Distance C Nalty*, N Peri*, J Gleason*, CD Castillo, S Hu, T Bourlai, R Chellappa	ASILOMAR 2022
• Forecasting from LiDAR via Future Object Detection N Peri , J Luieten, M Li, A Osep, L Leal-Taixe, D Ramanan	CVPR 2022
Assessment of a Novel Virtual Environment for Examining Human Cognitive-Motor Performance during Execution of Action Sequences AA Shaver [*] , N Peri [*] , R Mezebish, G Matthew, A Berson, C Gaskins, GP Davis, GE	HCII 2022
Katz, I Samuel, JA Reggia, J Purtilo, RJ GentiliA Synthesis-Based Approach for Thermal-to-Visible Face Verification	FG 2021
 N Peri, J Gleason, CD Castillo, T Bourlai, VM Patel, R Chellappa PreferenceNet: Encoding Human Preferences in Auction Design with Deep Learning 	NeurIPS 2021
 N Peri*, MJ Curry*, S Dooley, JP Dickerson The Devil is in the Details: Self-Supervised Attention for Vehicle Re-ID 	ECCV 2020
P Khorramshahi [*] , N Peri[*] , JC Chen, R Chellappa	
• A Dual Path Model with Adaptive Attention for Vehicle Re-ID P Khorramshahi, A Kumar, N Peri , SS Rambhatla, JC Chen, R Chellappa	ICCV $2019^{\dagger\dagger}$

WORKSHOP PUBLICATIONS

 QuickDraw: Fast Visualization, Analysis and Active Learning for Medical Image Segmentation D Syomichev[*], P Gopinath[*], GL Wei, E Chang, I Gordon, A Seifu, R Pemmaraju[*], N Peri[*], J Purtilo 	* HCII 2025
 Semi-Supervised Federated Multi-Organ Segmentation with Partial Labels <i>R Pemmaraju*</i>, <i>N Peri*</i> 	AAPM 2024 ^{††}
• An Empirical Analysis of Range for 3D Object Detection N Peri, M Li, B Wilson, YX Wang, J Hays, D Ramanan	ICCV 2023 ^{††}
 ReBound: An Open-Source 3D Bounding Box Annotation Tool for Active Learning W Chen*, A Edgley*, R Hota*, J Liu*, E Schwartz*, A Yizar*, N Peri*, J Purtilo* 	CHI 2023 [†]
 Deep k-NN Defense Against Clean-label Data Poisoning Attacks N Peri*, N Gupta*, WR Huang*, L Fowl, C Zhu, S Feizi, T Goldstein, JP Dickerson 	ECCV 2020^{\dagger}
• Towards Real-Time Systems for Vehicle Re-ID, Multi-Camera Tracking, and Anomaly Detection N Peri *, P Khorramshahi*, SS Rambhatla*, V Shenoy, S Rawat, JC Chen, R Chellappa	CVPR 2020^{\dagger}
• Attention Driven Vehicle Re-ID and Unsupervised Anomaly Detection for Traffic Understanding <i>P Khorramshahi</i> , N Peri , A Kumar, A Shah, R Chellappa	CVPR 2019^{\dagger}
JOURNAL PUBLICATIONS	
 Long-Tailed 3D Detection via Multi-Modal Late Fusion Y Ma[*], N Peri[*], S Wei, A Dave, W Hua, Y Li, D Ramanan, S Kong 	Under Review
• Accelerating Image Recognition Using High Performance Computing J Adams, JM Barton, R Chellappa, J Gabberty, J Gleason, S Hu, J Johnson, F Moor- Clingenpeel, B Oshiro, N Peri, D Richie, V To	ITEA 2023
• Data and Algorithms for End-to-End Thermal Spectrum Face Verification T Bourlai, J Rose, S Mokalla, A Zabin, L Hornak, CB Nalty, N Peri , J Gleason, CD Castillo, VM Patel, R Chellappa	TBIOM 2023
*Equal Contribution *Equal Supervision [†] Selected for Spotlight Presentation ^{††} Selected for Oral Presentation	
PATENTS	
• Few-Shot Object Detection with Vision-Language Models A Madan, N Peri, S Kong, D Ramanan, CK Mummadi, FC Condessa	Under Review
Learning Driving Behavior Control Parameters Using Machine Learning Models AB Vasudevan, N Peri , D Ramanan, CK Mummadi, FC Condessa	18/882,013
• End-to-End Systems and Methods for Streaming 3D Detection And Forecasting from LiDAR Point Cloud N Peri, D Ramanan	ls 17/692,973
WORK EXPERIENCE	
Carnegie Mellon University, Pittsburgh, PA, Research Assistant	2020 – Present
 Leading research on 3D object detection, multi-object tracking, motion forecasting, and multi-agent plant embodied perception Advisor: Deva Ramanan 	ning for
Boston Dynamics AI Institute, Boston, MA, Research Scientist InternJune 2• Leading research on data collection for bi-manual manipulationInstitute	2025 – Present
NVIDIA , Pittsburgh, PA, Research Scientist Intern Jan 20	24 – Dec 2024
 Led research on persistent 3D object detection in-the-wild Built GNN-based tracker that outperforms production system by 5% HOTA and achieves a 10x speedup 	. ,
	20 – May 2023
• Led research on improving thermal-to-visible face synthesis for zero-shot identification	

• Built robust face verification pipelines for multi-spectral data streams

Argo AI, Pittsburgh, PA, Research Scientist Intern

• Developed end-to-end 3D object detection and forecasting pipeline from LiDAR point clouds

May 2021 - Oct 2022

• Implemented novel metrics that jointly evaluate detection and forecasting accuracy

University of Maryland, College Park, MD, Research Assistant

• Conducted research in unsupervised traffic anomaly detection and discriminative representation learning for vehicle re-id

May 2018 - May 2021

- Led research in defending against clean-label adversarial poisoning attacks
- Established novel method for encoding human preferences in revenue maximizing auction design
- Advisors: Rama Chellappa & John P. Dickerson

Bank of America, Charlotte, NC, Conversational Commerce Technology Intern Jun 2019 – Aug 2019

- Developed novel deep learning pipeline to validate quality of utterance-intent pairs in chatbot conversations using PyTorch, AllenNLP, and NLTK
- Deployed RESTful Active Learning API to introduce targeted learning feedback loop and improve intent classification model performance

TEACHING EXPERIENCE

16-720, Carnegie Mellon University, Robotics Institute, Head Teaching Assistant	Spring 2022, Fall 2022
Managed team of teaching assistants to effectively coordinate course responsibilitiesGraded course projects and held office hours	
ENEE 244, University of Maryland, ECE Department, Undergraduate Teaching Fellow	Spring 2019
• Led Introduction to Digital Logic recitation for a discussion section of 15 students	

INVITED TALKS

• Argoverse 2 Open-World Scenario Mining Challenge Invited Talk: CVPR 2025, Workshop on Autonomous Driving	Jun 2025
• Foundational Few-Shot Object Detection Challenge Invited Talk: CVPR 2025, Workshop on Visual Perception via Learning in an Open World	Jun 202
• 3D Object Detection for Autonomous Vehicles Guest Lecture: 16-825, Learning for 3D Vision	Apr 202
• Towards Foundation Models for 3D Perception Invited Talk: Carnegie Mellon University (FLAME Seminar)	Mar 2025
• Image Processing from a Frequency Perspective Guest Lecture: 16-720, Computer Vision	Feb 2025
• Long-Tailed 3D Detection via 2D Late Fusion Invited Talk: ECCV 2024, Workshop on Vision-Centric Autonomous Driving	Oct 2024
• Shelf-Supervised Cross-Modal Pre-Training for 3D Object Detection Invited Talk: ECCV 2024, Autonomous Vehicles meet Multimodal Foundation Models Workshop	Oct 2024
• Argoverse 2 End-to-End Forecasting Challenge Invited Talk: CVPR 2024, Workshop on Autonomous Driving	Jun 2024
• Foundational Few-Shot Object Detection Challenge Invited Talk: CVPR 2024, Workshop on Visual Perception via Learning in an Open World	Jun 2024
• 3D Object Detection for Autonomous Vehicles Guest Lecture: 16-720, Computer Vision	Apr 2024
• Better Call SAL: Towards Learning to Segment Anything in LiDAR Invited Talk: Stack AV	Apr 2024
• 3D Object Detection for Autonomous Vehicles Guest Lecture: 16-825, Learning for 3D Vision	Apr 2024
• Long-Tailed 3D Object Detection via Multi-Modal Fusion Invited Talk: Carnegie Mellon University (R-PAD Lab)	Jan 2024
• An Empirical Analysis of Range for 3D Object Detection Invited Talk: ICCV 2023, Robustness and Reliability of Autonomous Vehicles in the Open-World	Oct 2023
• Argoverse 2 End-to-End Forecasting Challenge Invited Talk: CVPR 2023, Workshop on Autonomous Driving	Jun 2023
• 3D Object Detection for Autonomous Vehicles Guest Lecture: 16-825, Learning for 3D Vision	Mar 2023
• Image Processing and Convolutions Guest Lecture: 16-720, Computer Vision	Sep 202
, <u>r</u>	

• How do Autonomous Vehicles See the World? Invited Talk: Carnegie Mellon University (RoboLaunch)	Aug 2022
• Transformers for Vision	Apr 2022
Guest Lecture: 16-720, Computer Vision Training Convolutional Neural Networks Current Lecture: 16-720, Computer Vision 	Apr 2022
 Guest Lecture: 16-720, Computer Vision Metrics and Methods for Detection and Forecasting in Autonomous Vehicles Invited Talk: National Autonomous Vehicle Conference 	Apr 2022

SERVICE

Conference Reviewer: NeurIPS 20{21,22,23,24,25}, CVPR 20{22,23,24,25}, AAAI 20{23,24}, ICCV 2023, ICLR 2024, ECCV 2024, ICRA 2025

Journal Reviewer: IJCV 2021, TPAMI 2023

Mentorship: CMU AI Mentoring Program (20{21, 22}), QUEST Mentoring Program (2022), CMU AI for Social Good Summit (2022)

Organizer: Visual Perception and Learning in an Open World (CVPR 20{22, 23, 24, 25}), Computer Vision Reading Group (20{23, 24, 25})

Masters Thesis Committee Member: Bharath Raj, Anish Madan, Cainan Davidson Other: TRINITY Cluster Management 20{22,23,24,25}, AUTOBOT Cluster Management 20{22,23,24,25}, Robotics Institute Summer Scholars Admission Committee (2024)

Mentorship

Name Chancharik Mitra	Institution CMU	Year(s) 2025 –	Project Task vectors for foundational few-shot object de- tection
Cainan Davidson	CMU	2024 -	Benchmarking open-world 3D perception for autonomous vehicles
Guang-Lin Wei, Eric Chang, Padmini Gopinath, Ian Gordon, Amanuel Seifu, Daniel Syomichev	UMD	2024	CMSC435 software engineering capstone to build an active-learning framework for medical image analysis
Zihan Wang	CMU	2024 - 2025	Sparse-view dynamic reconstruction in-the-wild
Nina Johe, Aryan Kakadia, Muzzamil Khan, Morgan Ko, Josh Leeman, Max Son, Sashwat Venkatesh	UMD	2024	CMSC435 software engineering capstone to build an end-to-end platform for medical image analysis
Mehar Khurana	IIITD	2023 - 2024	Shelf-supervised 3D object detection with vision-language models
Anish Madan	CMU	2022 - 2024	Few-shot multi-modal 2D detection with vision- language models
Andrew Shen	CMU	2022 - 2023	Benchmarking modular 3D perception stack for autonomous vehicles
Xindi Wu	CMU	2022	Self-supervised multi-modal representation learn- ing for point clouds
Aminah Yizar, Andrew Edgley, Ezra Schwartz, Joshua Liu, Raunak Hota, Royce He, Wesley Chen	UMD	2022	CMSC435 software engineering capstone to build an active learning framework to allow human-in- the-loop 3D object annotation
Christopher Nalty	MUKH	2021 - 2022	Synthetic data augmentation for thermal-to- visible face verification
Aastha Senjalia, Andrew Vetter, Benjamin Namovicz, Cheyenne Mont- gomery, Ferzam Mohammad, Matthew Weinberg, Nicholas Revill	UMD	2021	CMSC435 software engineering capstone to build a visualization platform for autonomous vehicle data. Project won People's Choice Award.

AWARDS

Name	Institution	Distinction	Year
NSF Graduate Research Fellowship	CMU	National	2023
Maryland Undergraduate Researcher of the Year	UMD	University	2021
Sujan Guha Memorial Best Senior Thesis Award	UMD	Department	2021
CRA Outstanding Undergraduate Researcher (Honorable Mention)	UMD	National	2021
Yurie & Jeong H. Kim Scholarship	UMD	Department	$20{18,19,20}$