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Abstract. In recent years, the research community has approached the
problem of vehicle re-identification (re-id) with attention-based models,
specifically focusing on regions of a vehicle containing discriminative in-
formation. These re-id methods rely on expensive key-point labels, part
annotations, and additional attributes including vehicle make, model,
and color. Given the large number of vehicle re-id datasets with var-
ious levels of annotations, strongly-supervised methods are unable to
scale across different domains. In this paper, we present Self-supervised
Attention for Vehicle Re-identification (SAVER), a novel approach to ef-
fectively learn vehicle-specific discriminative features. Through extensive
experimentation, we show that SAVER improves upon the state-of-the-
art on challenging VeRi, VehicleID, Vehicle-1M and VERI-Wild datasets.

Keywords: Vehicle Re-Identification, Self-Supervised Learning, Varia-
tional Auto-Encoder, Deep Representation Learning

1 Introduction

Re-identification (re-id), the task of identifying all images of a specific object
ID in a gallery, has been recently revolutionized with the advancement of Deep
Convolutional Neural Networks (DCNNs). This revolution is most notable in the
area of person re-id. Lou et al. [28] recently developed a strong baseline method
that supersedes state-of-the-art person re-id methods by a large margin, using
an empirically derived “Bag of Tricks” to improve the discriminative capacity of
DCNNs. This has created a unique opportunity for the research community to
develop innovative yet simple methods to push the boundaries of object re-id.
Specifically, vehicle re-id has great potential in intelligent transportation ap-
plications. However, the task of vehicle re-id is particularly challenging since
vehicles with different identities can be of the same make, model and color. More-
over, the appearance of a vehicle varies significantly across different viewpoints.
Therefore, recent DCNN-based re-id methods focus attention on discriminative
regions to improve robustness to orientation and occlusion. To this end, many

* The first two authors equally contributed to this work.
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Fig. 1. Vehicle image decomposition into coarse reconstruction and residual images,
left-most column (a,e): vehicle image, second column (b,f): coarse reconstruction, third
column (c,g): residual, right-most column (d,h): normalized residual (for the sake of
visualization). Despite having the same coarse reconstruction, both vehicles have dif-
ferent residuals highlighting key areas, e.g., the windshield stickers, bumper design.

high performing re-id approaches rely on additional annotations for local regions
that have been shown to carry identity-dependent information, i.e. key-points
[41,16,17] and parts bounding boxes [11, 46] in addition to the ID of the objects
of interest. These extra annotations help DCNNSs jointly learn improved global
and local representations and significantly boost performance [16, 48] at the cost
of increased complexity. Despite providing considerable benefit, gathering costly
annotations such as key-point and part locations cannot be scaled to the grow-
ing size of vehicle re-id datasets. As manufacturers change the design of their
vehicles, the research community has the burdensome task of annotating new ve-
hicle models. In an effort to re-design the vehicle re-id pipeline without the need
for expensive annotations, we propose SAVER to automatically highlight salient
regions in a vehicle image. These vehicle-specific salient regions carry critical
details that are essential for distinguishing two visually similar vehicles. Specif-
ically, we design a Variational Auto-Encoder (VAE) [19] to generate a vehicle
image template that is free from manufacturer logos, windshield stickers, wheel
patterns, and grill, bumper and head/tail light designs. By obtaining this coarse
reconstruction and its pixel-wise difference from the original image, we construct
residual image. This residual contains crucial details required for re-id, and acts
as a pseudo-saliency or pseudo-attention map highlighting discriminative regions
in an image. Fig. 1 shows how the residual map highlights valuable fine-grained
details needed for re-identification between two visually similar vehicles.

The rest of the paper is organized as follows. In section 2, we briefly review
recent works in vehicle re-id. The detailed architecture of each step in the pro-
posed approach is discussed in section 3. Through extensive experimentation in
section 4, we show the effectiveness of our approach on multiple challenging vehi-
cle re-id benchmarks [43, 22,9, 27, 24], obtaining state-of-the-art results. Finally,
in section 5 we validate our design choices.
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2 Related Works

Learning robust and discriminative vehicle representations that adapt to large
viewpoint variations across multiple cameras, illumination and occlusion is es-
sential for re-id. Due to a large volume of literature, we briefly review recent
works on vehicle re-identification.

With recent breakthroughs due to deep learning, we can easily learn dis-
criminative embeddings for vehicles by feeding images from large-scale vehicle
datasets, such as VehicleID, VeRi, VERI-Wild, Vehicle-1M, PKU VD1& VD2 [43],
CompCars [44], and CityFlow [40], to train a DCNN that is later used as the
feature extractor for re-id. However, for vehicles of the same make, model, and
color, this global deep representation usually fails to discriminate between two
similar-looking vehicles. To address this issue, several auxiliary features and
strategies are proposed to enhance the learned global appearance representation.
Cui et al. [4] fuse features from various DCNNs trained with different objectives.
Suprem et al. [36] propose the use of an ensemble of re-id models for vehicle
identity and attributes for robust matching. [41,23, 46,11, 16] propose learning
enhanced representation by fusing global features with auxiliary local representa-
tions learned from prominent vehicle parts and regions, e.g., headlights, mirrors.
Furthermore, Peng et al. [31] leverage an image-to-image translation model to
reduce cross-camera bias for vehicle images from different cameras before learn-
ing auxiliary local representation. Zhou et al. [50] learn vehicle representation
via viewpoint-aware attention. Similarly, [48,32] leverage attention guided by
vehicle attribute classification, e.g., color and vehicle type, to learn attribute-
based auxiliary features to enhance the global representation. Metric learning is
another popular approach to make representations more discriminative. [47,2, 3,
21] propose various triplet losses to carefully select hard triplets across different
viewpoints and vehicles to learn an improved appearance-robust representation.

Alternatively, to augment training data for more robust training, [45] adopts
a graphic engine and [42, 39] use generative adversarial networks (GANs) to syn-
thesize vehicle images with diverse orientations, appearance variations, and other
attributes. [25, 26, 34, 38, 14, 29, 15] propose methods for improving the matching
performance by also making use of spatio-temporal and multi-modal informa-
tion, such as visual features, license plates, inter-camera vehicle trajectories,
camera locations, and time stamps.

In contrast with prior methods, SAVER benefits from self-supervised atten-
tion generation and does not assume any access to extra annotations, attributes,
spatio-temporal and multi-modal information.

3 Self-Supervised Attention for Vehicle Re-identification

Our proposed pipeline is composed of two modules, namely, Self-Supervised
Residual Generation, and Deep Feature Extraction. Fig. 2 presents the
proposed end-to-end pipeline. The self-supervised reconstruction network is re-
sponsible for creating the overall shape and structure of a vehicle image while
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Fig. 2. Proposed SAVER pipeline. The input image is passed through the VAE-based
reconstruction module to remove vehicle-specific details. Next, the reconstruction is
subtracted from the input image to form the residual image containing vehicle-specific
details. Later, the convex combination (with trainable parameter «) of the input and
residual is calculated and passed through the re-id backbone for deep feature extraction.
The entire pipeline is trained via triplet and cross entropy losses, separated via a batch
normalization layer (BN Neck) proposed in [28].

obfuscating discriminative details. This enables us to highlight salient regions
and remove background distractors by subtracting the reconstruction from the
input image. Next, we feed the convex combination (with trainable parameter
«) of the residual and original input images to ResNet-50 [12] model to gener-
ate robust discriminative features. To train our deep feature extraction module,
we use techniques proposed in “Bag of Tricks” [28] and adapt them for vehicle
re-identification, offering a strong baseline.

3.1 Self-Supervised Residual Generation

In order to generate the crude shape and structure of a vehicle while remov-
ing small-scale discriminative information, we leverage prior work in image seg-
mentation [1] and generation [19]. Specifically, we construct a novel VAE ar-
chitecture that down-samples the input image of spatial size H x W through
max-pooling into a latent space of spatial size % X ‘{V—ﬁ. Afterwards, we apply
the re-parameterization trick introduced in [19] to the latent features via their
mean and covariance. Next, we up-sample the latent feature map as proposed by
[30] to prevent checkerboard artifacts. This step generates the reconstructed im-
age of size H x W. Fig. 3 illustrates the proposed self-supervised reconstruction

network.

Formally, we pre-train our reconstruction model using the mean squared error
(MSE) and Kullback-Leibler (KL) divergence such that

£reconstruction = EMSE + )\LKL (1)
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Fig. 3. Self-Supervised image reconstruction required for subsequent residual gener-
ation. The input image goes through the convolutional encoder and is mapped to
3-dimensional latent variable. Using the VAE re-parameterization trick, a sample from
the standard multivariate Gaussian € is drawn and scaled via mean p and co-variance 3
of the latent variable. Lastly, 0 is up-sampled with a convolutional decoder to generate
the input image template with most fine grained details removed.

where " ow
Lyse = Z Z —I,(G, k) (2)
and "
_ 2 2
£KL = 9 % (ﬂ % wfj mz:: Mm + Om — log(am) - 1] (3)

In Eq. 1, A sets the balance between the MSE and KL objective functions. Also,
I, and I, in Eq. 2 refer to the original and generated images respectively. Finally,
in Eq. 3, M is the dimensionality of the latent features § € RM with mean
@ = [u1,...,pn] and covariance matrix X = diag(o12,...,02), that are re-
parameterized via sampling from standard multivariate Gaussian € ~ A (0, Is),
ie. 0= p+2e
We pre-train this model on the large-scale Vehicle Universe dataset, intro-
duced in section 4.2.1, prior to training our end-to-end pipeline, as described in
section 4. This pre-training allows the reconstruction model to generalize to ve-
hicle images with a larger variety of make, model, color, orientation, and image
quality. Hence, it captures domain invariant features that can later be fined-
tuned for a particular dataset. Additionally, pre-training improves the rate of
convergence for end-to-end pipeline training. It is important to note that unlike
traditional VAE implementations, we use three-dimensional latent feature maps,
e., channel, height and width dimensions, rather than one-dimensional latent
vectors with only channel dimension, for improving the reconstruction quality
and preserve more spatial information. Moreover, we scale Lk when calculat-
ing Eq. 1 to improve the reconstruction quality. We further explore the effect of
the KL divergence scaling factor A in section 5. Once the self-supervised image
reconstruction network generates the coarse image template I;, we subtract it
from original input to obtain the residual image, i.e. I, = I, — I.
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3.2 Deep Feature Extraction

Since vehicle images reside on a high-dimensional manifold, we employ a DCNN
to project the images onto a lower-dimensional vector space while preserving fea-
tures that can effectively characterize a unique vehicle identity. To this end, we
use a single-branch ResNet-50. To train this model, we use techniques proposed
in “Bag of Tricks” [28], which are shown to help a DCNN traverse the optimiza-
tion landscape using gradient-based optimization methods more effectively. In
particular, we observe that the following techniques significantly contribute to
the performance of the vehicle re-id baseline model:

1 - Learning Rate Warm-Up: [6] has suggested increasing the learning rate
linearly in initial epochs of training to obtain improved weight initialization.
This significantly contributes to the enhanced performance of our baseline.

2 - Random Erasing Augmentation (REA): To better handle the issue of
occlusion, [13] introduced REA with the goal of encouraging a network to
learn more robust representations.

3 - Label Smoothing: In order to alleviate the issue of over-fitting to the
training data, [37] proposed smoothing the ground-truth labels.

4 - Batch Normalization (BN) Neck: To effectively apply both classification
and triplet losses to the extracted features, a BN layer is proposed by [28].
This also significantly improves vehicle re-id performance.

The ResNet-50 feature extractor model is trained to optimize for triplet and
cross entropy classification losses which are calculated as follows:

B
1
Em-e:fg E + max d(zq,2,) — min d(zq, 2, 4
triplet Bizlaeb. {’Y pepé) ( p) e (a) ( )+ (4)

and
eXp( Wcjgx,)il + bc(i.i))

Zle exp( W]Ti’z + b])

In Eq. 4, B, b;, a, 7y, P(a) and N(a) are the total number of batches, i*" batch,
anchor sample, distance margin threshold, positive and negative sample sets
corresponding to a given anchor respectively. Moreover, xq, T, T, represent the
ResNet-50 extracted features associated with anchor, positive and negative sam-
ples. In addition, function d(.,.) calculates the Euclidean distance of the two
extracted features. Note that in Eq. 4, we used the batch hard triplet loss [13] to
overcome the computational complexity of calculating the distances to all unique
triplets of data points. Here we construct batches so that they have exactly K
instances of each ID used in a particular batch, i.e. B is a multiple of K. In Eq.
5, Z; and c(2;) refer to the extracted feature for the i*" image in the training
set after passing through the BN Neck layer and its corresponding ground-truth
class label respectively. Furthermore, W, b; are the weight vector and bias as-
sociated with class j in the final classification layer. N and C represent the total
number of samples and classes in the training process respectively.

1 N
»Cclassification = _N Z IOg (5)
i=1
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3.3 End-To-End Training

After pre-training the self-supervised residual generation module, we jointly train
the VAE and deep feature extractor. We compute the convex combination of
input images and their respective residuals using a learnable parameter «, i.e.
I.=ax1I,+ (1—a)x I, allowing the feature extractor network to weight the
importance of each input source. Moreover, the end-to-end training helps the
entire pipeline adapt the residual generation such that it is suited for the re-id
task. In summary, the loss function for end-to-end training is the following;:

(6)

ﬁtm‘,al = ﬁtriplet + Eclassification + nﬁreconstruction

In Eq. 6, the scaling factor n is empirically set to 100.

4 Experiments

In this section, we first present the different datasets on which we evaluate the
proposed approach and describe how vehicle re-identification systems are evalu-
ated in general. Next, we present implementation details for the proposed self-
supervised residual generation, deep feature extraction and end-to-end training
steps. Finally, we report experimental results of the proposed approach.

4.1 Vehicle Re-Identification Datasets

We evaluate SAVER on six popular vehicle re-id benchmarks, including VeRi,
VehicleID, VERI-Wild, Vehicle-1M and PKU VD1&VD2. Table 1 presents the
statistics of these datasets in terms of the number of unique identities, images
and cameras. Additionally, we highlight four additional datasets of unconstrained
vehicle images, including CityFlow, CompCars, BoxCars116K [35], and Stanford-
Cars [20], used in the pre-training of our self-supervised reconstruction network.

Table 1. Vehicle re-id datasets statistics. ID, IM, Cam refer to number of unique
identities, images and cameras respectively. Note that the evaluation set of VehiclelD,
VERI-Wild, Vehicle-1M, VD1 & VD2 are partitioned into small (S), medium (M) and
large (L) splits.

Vehicle Re-id Datasets
Split Set| VeRi VehiclelD VERI-Wild Vehicle-1M VD1 VD2
= ID | 576 13164 30671 50000 70591 39619
| IM [37746 113346 277797 844571 422326 342608
S Cam| 20 B 73 B B -
- S M L S M L S M L S M L S M L
| ID | 200 [800 [ 1600 [ 2400 | 3000 | 5000 | 10000 | 1000 | 2000 | 3000 | 18000 |131275] 141757 | 12000 | 70755 | 79764
Z“; IM [11579] 800 | 1600 | 2400 |38861[64389[128517| 1000 | 2000 | 3000 [104887|602032[1095649[103550[455910(805260
Cam | 19 - - - 146 | 153 | 161 - - - - - - - - -
z ID | 200 |800 | 1600 | 2400 | 3000 | 5000 | 10000 | 1000 | 2000 | 3000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000
é IM [ 1678 [5693[11777|17377| 3000 | 5000 | 10000 {15123]30539|45069| 2000 | 2000 | 2000 | 2000 | 2000 | 2000
Cam | 19 - - - 105 | 113 126 - - - - - - - - -
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Re-id systems are commonly evaluated using the Cumulative Match Curve
(CMC) and Mean Average Precision (mAP). A fixed gallery set is ranked with
respect to the similarity score, e.g., Lo distance, of its images and a given query
image. CMC@K measures the probability of having a vehicle with the same ID
as the query within the top K elements of the ranked gallery. It is a common
practice to report CMC@1 and CMC@5. Similarly, mAP measures the average
precision over all images in a query set.

4.2 Implementation Details

Here we discuss the implementation of both the self-supervised residual genera-
tion and deep feature extraction modules. In general, we resize all the images to
(256,256) and normalize them by a mean and standard deviation of 0.5 across
RGB channels before passing them through the respective networks. Moreover,
similar to [17], we pre-process all images across all the experiments with the
Detectron object detector [7] to minimize background noise.

4.2.1 Self-Supervised Residual Generation To pre-train the self-supervised
residual generation module, we construct the large-scale Vehicle Universe dataset.
We specifically consider vehicles from a variety of distributions to improve the
robustness of our model. We utilize data from several sources, including Comp-
Cars, StanfordCars, BoxCars116K, CityFlow, PKU VD1&VD2, Vehicle-1M, Ve-
hicleID, VeRi and VeRi-Wild. In total, Vehicle Universe has 3706670, 1103404
and 11146 images in the train, test and validation sets respectively.

4.2.2 Deep Feature Extraction As mentioned in section 3.2, we use ResNet-
50 for feature extraction. In all of our experiments learning rate starts from
3.5e — 5 and is linearly increased with the slope of 3.1e — 5 in the first ten
epochs. Afterwards, it is decayed by a factor of ten every 30" epoch. In total,
the end-to-end pipeline is trained for 150 epochs via Adam [18] optimizer. Fur-
thermore, we use an initial value of a = 0.5 for convex combination and v = 0.3
for the triplet loss in Eq. 4.

4.3 Experimental Evaluation

In this section, we present evaluation results of the global appearance model
(baseline) and global appearance model augmented with self-supervised atten-
tion (SAVER) on different re-id benchmarks discussed in section 4.1.

4.3.1 VeRi Table 2 reports the evaluation results on VeRi, a popular dataset
for vehicle re-id. SAVER improves upon the strong baseline model. Most notably,
SAVER gives 1.4% improvement on the mAP metric. We note that « in the
convex combination of the input and residual saturates at 0.96, which means
the model relies on 96% percent of the original image and 4% of the residual to
construct more robust features.
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Fig. 4. Grad-CAM visualization of baseline and SAVER; (a) original image, (b) Grad-
CAM visualization corresponding to the baseline model, e.i., « = 1, (c),(d) are resid-
ual and normalized residual maps (for the sake of visualization) obtain via our pro-
posed self-supervised model respectively. (e) is the Grad-CAM visualization of proposed
model, e.i., @« = 0.97 in VehicleID dataset.

4.3.2 VehicleID Table 3 presents results of baseline and SAVER on test
sets of varying sizes. Performance improvement of +1.0% in CMC@1 over the
baseline model can be observed for all the test splits. To better demonstrate the
discriminating capability of the proposed model, we visualize the attention map
of both baseline and the proposed SAVER models on an image of this dataset
using Gradient Class Activation Mapping (Grad-CAM) [33]. In Figure 4, it is
clear that SAVER is able to effectively construct attention on regions containing
discriminative information such as headlights, hood and windshield stickers.

4.3.3 VERI-Wild Evaluation results on the VERI-Wild dataset are pre-
sented in Table 4. Notably, our proposed residual generation model is improved
upon the baseline by +2.0% and +1.0% for mAP and CMC@1 metrics on all eval-
uation splits respectively. The final alpha value a = 0.94 suggests that the resid-
ual information contributes more in extracting robust features in this dataset.

4.3.4 Vehicle-1M Table 5 reports the results of baseline and the proposed
methods. Similar to VehicleID dataset, Vehicle-1M does not include fixed evalu-
ation sets, therefore we randomly construct the evaluation splits and keep them
fixed throughout the experiments. With the value of & = 0.98 the proposed self-
supervised residual generation module improves upon the baseline model in all
metrics across all evaluation sets.

4.3.5 PKU VD1&2 Table 6 highlights the evaluation results on both PKU
VD datasets. Similar to most re-id datasets, VD1&2 have S/M /L evaluation sets.
However, due to the extreme size of these data splits, as shown in Table 1, we
are only able to report numbers on the small evaluation set. The performance
of SAVER is comparable to our baseline model. Moreover, the final value of
a = 0.99 indicates that baseline models is already very strong, and has almost
no room for improvement. We can conclude that our performance on these data
sets are saturated. Qualitatively, in Figure 5 we show two failure cases of SAVER
on these datasets. Note that how extremely similar these images are and it is
nearly impossible to differentiate them based on only visual information.
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Table 2. Performance Comparison on VeRi

Model [[mAP(%)|/CMC@1(%)|CMCQ5(%)
Baseline|| 78.2 95.5 97.9
SAVER/| 179.6 96.4 98.6 a= 0.96|

Table 3. Performance Comparison on VehicleID

CMCal(%) CMC@5(%)
S| M| L S| M| L
Baseline|| 78.4|76.0|74.1|92.5|89.1|86.4
SAVER||79.9|77.6|75.3|95.2(91.1|88.3|a = 0.97|

Model

Table 4. Performance Comparison on VERI-Wild

Model II_mAP(%) | CNIC@1(%) | CMC@5(%)

STM|L|[S[M|L]|S[M|L
Baseline|| 78.5| 72.8 [65.0]92.9|91.3 88.1|97.3 | 96.8 95.0
SAVER||80.9(75.3|67.7(94.5|92.7|89.5|98.1|97.4(/95.8 |« = 0.94‘

Table 5. Performance Comparison on Vehicle-1M

CMCQ1(%) | CMC@5(%)
STM|L|[S[M]|L
Baseline|[93.6|94.991.7]97.9(99.1] 98.0
SAVER|[95.5/95.3/93.1]98.0]99.4/98.6|a — 0.98|

Model

Table 6. Performance Comparison on VD1& VD2

Dataset|| Model [mAP(%)/CMCQ1(%)|CMCQ5(%)
VD1 Baseline|| 96.4 96.2 98.9
SAVER 96.7 96.5 99.1 a = 0.99‘
VD2 Baseline|| 96.8 97.9 99.0
SAVER/| 96.7 97.8 99.0 a= 0.99\

(e) Query (f) Top 1 (g) Top 2 (h) Top 3

Fig. 5. Examples of SAVER failure on VD1 (sub-figures (a-d)) and VD2 (sub-figures (e-
h)). The overall appearance of the query and top ranked images of the gallery are nearly
identical. Visual cues such as windshield sticker placement are almost indistinguishable.
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4.3.6 State-of-the-Art Comparison In this section, we present the latest
state-of-the-art vehicle re-id methods and highlight the performance of the pro-
posed SAVER model. Table 7 reports the state-of-the-art on re-id benchmarks.
It can be seen that our proposed model, despite its simplicity, surpasses the
most recent state-of-the-art vehicle re-id works without relying on any extra an-
notations or attributes. For the case of VeRi and VERI-Wild datasets, we also
try the method of re-ranking suggested in [49] and achieved considerable mAP
scores of 82.0 and 84.4 respectively.

Table 7. Comparison with recent state-of-the-arts methods

Dataset
VeRi VehicleID
Method CMC(%) > M a

mAP(%) CMC(%) | CMC(%) | CMC(%)

@ [@5 ||[@l | @ | @[ @ |@l | @5

AAVER [16] 66.35 [90.17|94.34]|74.69| 93.82[68.62| 89.95 |63.54| 85.64
CCA 31] 68.05 [91.71]96.90|75.51| 91.14[73.60| 86.46 |70.08| 83.20
BS [21] 67.55 |90.23]96.42[|78.80|96.17|73.41]92.57|69.33|89.45
AGNet [43] 71.59 |95.61]96.56][71.15] 83.78 |69.23| 81.41 [65.74] 78.28
VehicleX [45] 73.26_|94.99]97.97][79.81] 93.17 |76.74] 90.3473.88| 83.18
PRND[11] 743 [94.3]98.7||78.4] 923 [75.0| 88.3 |74.2| 86.4
79.6 [96.4][98.6 [[79.9] 95.2 [77.6] 91.1 [75.3] 88.3 |

‘ Ours ‘
|

\
[Ours + Re-ranking]| 82.0 [96.9[97.7]

Dataset

VERL-Wild Vehicle 1M VD1 VD2
S M L S M L o
Method "1 oMe | T OMC | T OMC CMC oMc [ oMC fmap| M€ |map| CMC
mAYTEr Tas MY et (@5 | (@i @5 | @l | @5 | @1 | @5 | @l | @ @i | @ @1 | @5

BS[21]  [[70.54]84.17[95.30[62.83[78.22[93.06]51.63[69.99[88.45]] - - -
AAVER][16]]/62.23]75.80]92.70[53.66]68.24|88.88]41.68]58.69|81.59]| - - - - -
TAMR [10] - - - - - - - - - 1]95.95[99.24(94.27(98.86(92.91]98.30(| - - - - - -

Ours 80.9]94.5]98.1]75.3]92.7[97.4]67.7[89.5]95.8]] 95.5 [ 98.0 [95.3[99.4]93.1]98.6][96.7][96.5[99.1[96.7]97.8]99.0]

Ours +

Re-ranking

- - |[87.48| - - |I84.55] - -

84.4|95.3| 97.6

5 Ablation Studies

In this section, we design a set of experiments to study the impact of different
neural network architectures on the quality of reconstructed images, and also
understand the impact of key hyper-parameters. In addition, we are interested
in understanding how we can maximally exploit the reconstructed images in
deep feature extraction. The experimental results of the reconstruction network
are evaluated on the Vehicle Universe dataset, and experiments regarding the
deep feature extraction module are evaluated on VeRi and VehicleID datasets.

5.1 Residual Generation Techniques

5.1.1 Effect of Different Reconstruction Architectures Here, we study
the reconstruction quality of Auto-Encoder (AE) [1], VAE [19], and GAN [§]
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(a) Original (b) AE

(f) Original (g) AE (h) VAE (i) GAN (j) BF

Fig. 6. Different image reconstruction methods.

methods. Moreover, we study the use of Bilateral Filtering (BF) as a baseline
for texture smoothing, subsequent residual generation and vehicle re-id. Figure
6 qualitatively illustrates the reconstruction of each method for a given vehicle
identity. We notice that both AE and GAN models attempt to recreate fine-
grained details, but often introduce additional distortions. Specifically, the GAN
model generates new textures, modifies the logo and distorts the overall shape of
the vehicle. As a result, GANs produce sharper images with various artifacts that
diminish the quality of the residual image required by the re-id network. Also
note that although bilateral filtering attempts to smooth images, it is unable
to remove the critical details needed in residuals and vehicle re-id. The VAE is
able to reconstruct the image by removing minute details and smoothing out
textures. As a result, the VAE is able to generate the detailed residual maps
needed for our proposed re-id method. Table 8 presents evaluation metrics on
VeRi-766 and VehicleID for each of the generative models and bilateral filtering.

Table 8. Performance comparison of different image reconstruction methods

Dataset
VeRi VehicleID
Method CMC(%) 5 M L
mAP(%) CMC(%) | CMC(%) | CMC(%)

@l |@5| @l |@5|@l|@5|@l|@5
AE 79.0 [96.0(98.2|[79.0(93.9[76.8(90.5|74.9|87.9
VAE 79.6 |96.4|98.6(|79.9|95.2|77.6|91.1|75.3|88.3
GAN 78.3 ]95.6|98.1|[78.5|93.0(75.6|89.1|73.4|85.7
BF 78.5 [95.5(97.6||78.7(76.6|74.5(94.2]90.2|87.4

5.1.2 Effect of Scaling Kullbeck-Leibler Divergence Coefficient \ in
Eq. 1 In this experiment, we are particularly interested in the scaling parameter
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A used in training the VAE model. Figure 7 demonstrates how larger values of
A result in a more blurry reconstruction. Intuitively, this parameter offers a nat-
ural level for balancing the reconstruction quality of fine-grained discriminative
features. As A approaches 0, our VAE model approximates the reconstruction
quality of a traditional Auto-Encoder. Empirically, we found that A = le — 3
produces higher quality vehicle templates, while removing discriminative infor-
mation across all datasets.

(a) Original JA=1le—1

Fig. 7. Effect of scaling KL loss in image generation

5.2 Incorporating Residual Information

To effectively exploit complimentary information provided by the residuals, we
design a set of four additional experiments on the VeRi and VehicleID datasets
as follows:

A. We only feed the VAE reconstruction I, as input to the re-id network. The
purpose of this experiment is to understand how much critical information
can be inferred from the VAE reconstruction.

B. We only feed the residual image I,. into the re-id pipeline. In this experiment
we are interested to find out how much identity-dependent information can
be extracted from only the residual image.

C. We use the residual maps to excite the actual image of the vehicle through
point-wise matrix multiplication.

D. We concatenate the residual image with the original input image. Therefore,
in this experiment we feed a six-channel tensor to the feature extraction
module.

Table 9 presents the results of experiments A to D and highlights their perfor-
mance against the baseline and SAVER models. In experiment A, the deep fea-
ture extractor is trained using the reconstructed image from the VAE. Intuitively,
this method provides the lowest performance since all discriminating details are
obfuscated. Interestingly, experiment B, training a deep feature extractor using
only residual images, is able to perform nearly as well as our standard base-
line. This reaffirms the idea that local information is essential for vehicle re-id.
Experiment C performs considerably worse than the baseline model, indicating
that point-wise multiplication with the sparse residual removes key information.
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Lastly, experiment D performs lower than our baseline. This can be attributed
to the ImageNet [5] weight initialization, which is not well suited for six-channel
images.

Table 9. Evaluation of different designs of employing residuals

Dataset
VeRi VehicleID
Experiment CMC(%) S M L
mAP(%) CMC(%) | CMC(%) | CMC(%)
Ql|@5 ||@l|@5 | @]l | @5 | @l | @5
A 67.5 191.4]96.4(/64.2|80.6|62.9|76.3|59.4|73.5
B 77.5 194.5]98.2(|77.9|92.7|74.7189.0|73.4|86.2
C 71.4 191.9]96.4(76.3|92.6|73.3|86.8|70.7[83.5
D 75.7 194.8]98.3(78.9193.1|75.3|89.2(73.3[86.1
Baseline 78.2 195.5]97.978.4|92.5|76.0|89.1|74.1(86.4
SAVER 79.6 |96.4|98.6((79.9(95.2|77.6/91.1|75.3|88.3

6 Conclusion

In this paper we have shown the benefits of using simple, highly-scalable network
architectures and training procedures to generate robust deep features for the
task of vehicle re-identification. Our model highlights the importance of attend-
ing to discriminative regions without additional annotations, and outperforms
existing state-of-the-art methods on benchmark datasets including VeRi, Vehi-
cleID, Vehicle-1M, and VeRi-Wild.
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