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Abstract

Recent advances in artificial intelligence have led to the
emergence of foundation models, large-scale pre-trained
neural networks that serve as versatile starting points for
a wide range of downstream tasks. In this work, we present
ZERO, a zero-shot multi-prompt object detection model
specifically designed for robust, production-ready deploy-
ment across diverse industrial domains. ZERO integrates
direct image input with multiple user-defined prompts,
which can include both textual and visual cues, and pro-
cesses them through dedicated encoders to generate ac-
curate detection outputs. The model architecture is opti-
mized for scalability, with a total of 1.033 TFLOPS and
622.346 million parameters, and is trained using a domain-
specific image database exceeding one billion images. For
the CVPR 2025 Foundational Few-Shot Object Detection
(FSOD) Challenge, we introduce a domain-specific fine-
tuning strategy that emphasizes prompt diversity and con-
servative pseudo-labeling, enabling effective adaptation to
new domains with minimal supervision. Qur approach
demonstrates practical advantages in flexibility, efficiency,
and real-world applicability, achieving strong performance
on the RF20VL-fsod benchmark despite limited annotation
budgets. The results highlight the potential of prompt-
driven, data-centric Al for scalable and adaptive object de-
tection in dynamic industrial environments.

1. Introduction

Recent advances in artificial intelligence have been marked
by the emergence of Foundation Models (FMs), which dif-
fer fundamentally from traditional, well-defined tasks such
as object detection, text classification, instance segmenta-
tion, and fraud detection. Unlike these conventional tasks,
which have clear objectives and boundaries, foundation
models are not easily confined to a single, explicit defi-
nition. As highlighted in Rishi’s report [15], foundation
models encompass large-scale, pre-trained models—such
as BERT [6], DALL-E [1], and GPT-3 [3] that are trained on
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vast datasets and can be adapted to a wide variety of down-
stream applications. Major technology companies similarly
define foundation models as large deep learning neural net-
works trained on massive datasets, fundamentally chang-
ing how data scientists approach machine learning. Rather
than building Al systems from scratch, practitioners now
use foundation models as starting points, enabling faster
and more cost-effective development of new applications.

In the vision domain, Vision Foundation Models (VFMs)
are distinguished by their capacity to learn from diverse
domains and support transfer learning, while also being
capable of performing a variety of functions without fur-
ther domain-specific training. Recent research has focused
on models capable of detecting and segmenting arbitrary
objects based on textual, visual, or prompt-based cues.
The field has evolved from closed-set detection, where all
classes are known during training, to open-set detection,
which aims to identify both known and novel classes in
dynamic, real-world environments. Many open-set mod-
els leverage pre-trained vision-language models like CLIP
[13] to generalize to new concepts, but these often face lim-
itations in aligning fine-grained image regions with textual
descriptions. Approaches such as GLIP [8] and Ground-
ingDINO [9] have introduced new architectures to address
these challenges, supporting a broader range of prompts and
tasks, though some limitations remain in terms of prompt
flexibility and objective evaluation.

Our model named ZERO is developed with the goal of
providing immediately deployable visual recognition ca-
pabilities in production environments, relying solely on
prompting techniques. By leveraging a vast, domain-
specific image database and a prompt-centric approach, it
simplifies traditional data labeling and model training pro-
cesses, allowing for rapid adaptation to new requirements
and seamless integration with existing systems. This ap-
proach offers significant advantages in scalability, flexibil-
ity, and real-world applicability, supporting a wide array of
domains and evolving business needs.



Model Component FLOPS (G)
Image Backbone 547

Text & Visual Encoder 22
Transformer Layer 426

etc 28

Table 1. FLOPS for model architecture.

2. ZERO
2.1. Model Architecture

The internally developed model for object detection inte-
grates direct image input (S) with multiple user-defined
prompts (P;,4 = 1,..., N), which can range from generic
keywords to simple sentences and are processed via a text
encoder, while visual elements within prompts are handled
by an image encoder, with both encodings fused to gener-
ate the final detection output. As shown in Figure 1, the
transformer encoder fuses each independent representative
feature. Individual FLOPS for each layer are shown in Ta-
ble 1.

2.2. Training

When running the model on an NVIDIA A100-SXM4-
80GB GPU with a mini-batch size of 2, approximately
65GB of GPU memory is consumed. Currently, the project
is being conducted across 8 GPUs with a gradient accumu-
lation step of 2, resulting in a total effective batch size of 32.
For a dataset size of about 1M images, the training process
takes approximately 240 hours.

2.3. Dataset

SuperbAl is a company that provides Al solutions for en-
terprises, specializing in rapidly building high-quality Al
training data through an AI MLOps platform tailored for
large-scale data management. The company’s greatest
strength is its possession of a vast domain-specific image
database consisting of over 1 billion images. We have in-
dependently built industrial datasets that are available for
use in current research. These datasets are highly relevant
to industries such as manufacturing, distribution, logistics,
security, and surveillance. From this pool, we have se-
cured a dataset of 0.92M images available for current re-
search and have defined 37 domains (including manufac-
turing, healthcare, security, autonomous driving, etc.), also
preparing high-quality evaluation datasets for this purpose.
In Figure 2, we described the brief pipeline for preparing
our dataset. We used SAM2 [14] and captioning models
such as smolVLM [11] and Qwen-VL [2] for generating
captions.

3. Foundation FSOD challenge

CVPR 2025 Foundational FSOD Challenge [10, 16] fo-
cuses on performing few-shot object detection (FSOD) us-
ing the RF20VL-fsod dataset, curated from 20 distinct do-
mains. Participants are allowed to pretrain their models on
any external datasets, but fine-tuning must be conducted ex-
clusively on the RF20VL-fsod dataset. The training split
provides only 10 bounding box annotations per category,
and due to this limited annotation budget, not all categories
may be labeled in every image. Each category is accompa-
nied by a noun phrase description that clarifies the mean-
ing of category names, particularly those that are otherwise
ambiguous or insufficiently descriptive. For example, the
category name ‘DIP’ in the x-ray-id domain is clarified as
’Distal Interphalangeal joint, the farthest joint in the fin-
gers’. The final evaluation score is computed by averaging
the mAP@50:95 across all domains.

We propose a domain-specific fine-tuning of Superb AI’s
ZERO, a zero-shot multi-prompt object detection model
that is robust enough for product-level deployment across
various industrial domains. Leveraging our expertise in
data-centric Al development, we designed our training
pipeline to maximize performance under limited supervi-
sion. In the fine-tuning phase, we focus on promoting
prompt diversity - both in textual and visual prompts - to en-
able effective adaptation to the heterogeneous and domain-
specific nature of the RF20vl-fsod dataset. In this section,
we explain the strategies used to adapt the model effectively
to the target domains using limited annotations. It is struc-
tured into three stages: training, inference, and submission.

3.1. Training

During training, we introduce extensive prompt diversity to
mitigate overfitting. At the text level, we employ LLaMA-
3-8B-Instruct [5] to paraphrase category descriptions into
concise noun phrases. The paraphrasing process is guided
by a carefully crafted prompt template that instructs the
model to preserve semantic integrity, avoid redundancy, and
generate unambiguous and distinct definitions. This aug-
mentation not only increases the lexical variety of prompts
but also improves the model’s ability to distinguish fine-
grained categories. In addition to positive prompts, we in-
clude negative textual prompts to encourage a better dis-
criminative embedding space obtained by contrastive learn-
ing. Note that the number of negative prompts is set with
caution to avoid introducing label noise.

At the visual level, we apply both in-image and out-
image prompting strategies. In-image visual prompts use
objects co-occurring in the same image, reflecting a conven-
tion common in large-scale training in the vision founda-
tion model [7] and aiding contextual reasoning. Out-image
visual prompts, by contrast, introduce objects of the same
category from other images, fostering generalization and re-
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Figure 2. Data labeling pipeline

ducing reliance on narrow contextual cues.

Alongside prompt engineering, we implement a con-
servative pseudo-labeling strategy: only model predictions
with high confidence scores are added as pseudo-labels for
instances of unlabeled categories in the train split. This
strict filtering ensures the integrity of additional supervi-
sion while preventing error accumulation from low-quality
labels.

Instruction

You are an assistant specialized in generating concise noun-
phrase definitions by paraphrasing. You will be given a
list of terms in the format [term] = [definition].
For each term, return a corresponding line in the format
[term] = [paraphrased definition].
Your paraphrased definitions must:

1. Be concise and written as noun phrases.

2. Preserve the original meaning and context.

3. Clearly distinguish each term from the others.

4. Follow the same line-by-line format as the input.
Do not add or omit any terms.

Table 2. Instruction used for text prompt augmentation.

3.2. Inference

During inference, we adopt several techniques to improve
detection performance and stability. Test-time augmenta-
tion (TTA) is applied by default using a combination of im-
age resizing at multiple scales (0.8, 1.0x, 1.2x) and hor-
izontal flipping, effectively exposing the model to various
spatial configurations. We also perform a category-wise
threshold search, tuning the confidence threshold for each
class individually to optimize the mean average precision
(mAP) in the validation split. To further enhance robust-
ness, we considered the ensemble of predictions from both
text and visual prompts.



Factor Options

original

Text prompt .
p P original + augmented

in-image

Visual prompt .
P p out—-image

Annotations original
original + pseudo-labeled
text

Inference visual

text + visual

Table 3. Factors considered for checkpoint selection.

3.3. Submission

Due to the distinctiveness of each domain, no universal
strategy consistently outperforms others. Therefore, we ob-
tained various model checkpoints by turning on and off
the proposals for training and inference, and selected the
best checkpoint guided by the performance on a validation
split. For each dataset from the 20 distinct domains, the
best checkpoint is selected based on combinations of four
factors in Table 3.

It is important to note that, similar to the training split,
the validation split is only partially annotated. Therefore,
during checkpoint evaluation, we restrict predictions to the
categories known to be present in each image. In contrast,
for test split inference intended for final submission, predic-
tions are obtained across all categories.

4. Conclusion

In this work, we presented a domain-specific fine-tuning
strategy for adapting a zero-shot multi-prompt object de-
tection model, Superb AI’'s ZERO, to the RF20vI-fsod few-
shot detection challenge. By leveraging data-centric de-
sign principles, including prompt diversity and conserva-
tive pseudo-labeling, our approach effectively adapts to di-
verse domains using minimal supervision. Through care-
fully crafted textual and visual prompts, combined with ro-
bust inference techniques, we demonstrated a practical and
scalable solution for domain-adaptive FSOD under limited
annotation conditions.

As future work, we are exploring several directions to
enhance performance and generalization further. These in-
clude selective fine-tuning techniques, such as BOIL [12],
to balance generalization and specificity in few-shot learn-
ing, and adopting particular design choices, like NaViT [4],
to better preserve aspect ratios and incorporate visual con-
text during training and inference for improved spatial fi-
delity.
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