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Abstract

Contemporary autonomous vehicle (AV) benchmarks have advanced tech-
niques for training 3D detectors, particularly on large-scale LiDAR data.
Surprisingly, although semantic class labels naturally follow a long-tailed
distribution, these benchmarks only focus on a few common classes (e.g.,
pedestrian and car) and neglect many rare classes in-the-tail (e.g.,
debris and stroller). However, in the real open world, AVs must still
detect rare classes to ensure safe operation. Moreover, semantic classes
are often organized within a hierarchy, e.g., tail classes such as child and
construction-worker are arguably subclasses of pedestrian. However,
such hierarchical relationships are often ignored, which may yield mislead-
ing estimates of performance and missed opportunities for algorithmic
innovation.

We address these challenges by formally studying the problem of Long-
Tailed 3D Detection (LT3D), which evaluates detection performance on all
classes, including those in-the-tail. We evaluate and innovate upon popular
3D detectors, such as CenterPoint and PointPillars, adapting them for
LT3D. We develop hierarchical losses that promote feature sharing across
common-vs-rare classes, as well as improved detection metrics that award
partial credit to “reasonable” mistakes respecting the hierarchy (e.g.,
mistaking a child for an adult). Finally, we point out that fine-grained
tail class accuracy is particularly improved via multimodal fusion of RGB
images with LiDAR; simply put, fine-grained classes are challenging to
identify from sparse (LIDAR) geometry alone, suggesting that multi-modal
cues are crucial to long-tailed 3D detection.

We empirically show that (a) high-resolution RGB images help recognize
rare objects, (b) LiDAR provides precise 3D localization, and (c) uni-modal
detectors can be trained with more diverse examples because they do not
require aligning and annotating multi-modal data. With these insights, we
propose a simple late-fusion framework that combines RGB and LiDAR
detections. We examine three critical components in this framework and
consider whether to train 2D or 3D RGB detectors, whether to match
RGB and LiDAR detections in the 2D image plane or 3D bird’s-eye-view
(BEV), and how to fuse matched detections. Our modifications improve
accuracy by 12.2% AP on average for all classes, and dramatically improve
AP for rare classes (e.g., stroller AP improves from 0.1 to 37.7)!
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nuScenes Dataset Statistics. According to the histogram of per-class
object counts (on the left), the nuScenes benchmark focuses on the com-
mon classes in cyan (e.g., car and barrier) but ignores rare ones in

(e.g., stroller and debris). In fact, the benchmark creates a superclass
pedestrian by grouping multiple classes in , including the common
class adult and several rare classes (e.g., child and police-officer);
this complicates the analysis of detection performance as pedestrian
performance is dominated by adult. Moreover, the ignored superclass
pushable-pullable also contains diverse objects such as shopping-cart,
dolly, luggage and trash-can as shown in the top row (on the right).
We argue that AVs should also detect rare classes as they can affect AV
behavior. Following [41], we report performance for three groups of classes
based on their cardinality (split by dotted lines): Many, Medium, and Few. .

Late Fusion Overview. We extensively explore the simple late-fusion
framework for LT3D by ensembling RGB and LiDAR uni-modal detec-
tors [43]. We rigorously examine three critical components within this
framework (Fig. 1.3) and propose a simple method that fuses detections
produced by a 2D RGB-detector (e.g., DINO [74]) and a 3D LiDAR-detector
(e.g., CenterPoint [72]). Our method achieves 51.4 mAP on LT3D bench-
marks based on the well-established nuScenes [4] dataset, significantly
improving over baselines by 12.2% (Table 4.1). . . . . . . . . . ... ..

Examining Late Fusion Strategies. We examine three key components
in effectively fusing RGB and LiDAR detectors. We explore: A. whether
to train 2D or 3D monocular RGB detectors for late-fusion, B. whether
to match multi-modal detections in the 2D image plane or 3D bird’s-eye-
view (BEV), and C. how to optimally fuse matched detections. Perhaps
surprisingly, our exploration reveals that using 2D RGB detectors, matching
in the 2D image plane, and fusing scores probabilistically with calibration
leads to better LT3D performance. . . . . . . . . . . ... ... ....
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nuScenes Semantic Hierarchy. nuScenes defines a semantic hierarchy (on
the left) for all annotated classes (Fig. 1.1). We highlight common classes
in white and rare classes in gold. The standard nuScenes benchmark
makes two choices for dealing with rare classes: (1) ignore them (e.g.,
stroller and pushable-pullable), or (2) group them into coarse-grained
classes (e.g., adult, child, construction-worker, police-officer are
grouped as pedestrian). Since the pedestrian class is dominated by
adult (Fig. 1.1), the standard benchmarking protocol masks the challenge
of detecting rare classes like child and police-officer. We leverage
this hierarchy during training (on the right) by predicting class labels at
multiple levels of the hierarchy. Specifically, we train detectors to predict
three labels for each object: its fine-grained label (e.g., child), its coarse
class (e.g., pedestrian), and the root-level class object. This means that
the final vocabulary of classes is no longer mutually exclusive, complicating
the application of multi-class softmax losses. To address this, use a sigmoid
focal loss that learns separate spatial heatmaps for each class. . . . . . .

Qualitative Improvement From Multi-Modal Late Fusion. Late-
fusion of 2D RGB and 3D LiDAR detections improves LT3D performance.
Projecting 3D LiDAR detections onto the image-plane makes matching
RGB and LiDAR detections more robust. In contrast, matching inflated
2D RGB detections in the 3D BEV is more challenging due to noisy depth
estimates. We find that late-fusion is able to boost the confidence score of
LiDAR-based detections when both LiDAR and RGB detections agree, and
correct labels when they don’t agree. For example, our late fusion algorithm
correctly relabels predictions with semantically similar (according to the
nuScenes labeling hierarchy [43]), but visually distinct classes like adult
and stroller, or adult and child. . . . . . . ... .. ... .. ...

Multi-Modal Filtering. Spatial matching in 3D BEV effectively removes
high-scoring false-positive LiDAR detections. The green boxes are ground-
truth strollers, while the blue boxes are stroller detections from our
best performing models, LIDAR-based detector CenterPoint [72] (left) and
RGB-based detector FCOS3D [63] (mid). The final filtered result removes
LiDAR detections not within m meters of any RGB detection (right).

Failure Mode of Inflating 2D Detections via LIDAR Points. We
find that 3D BEV filtering using inflated 2D detections does not work well
due to noisy depth predictions. For example, background points on fences
and on trees leads to imperfect depth prediction from inflation. Attempting
to filter 3D LiDAR detections using these noisy inflated 2D RGB detections
in the BEV introduces many missed-detections and false positives.
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Argoverse 2 Dataset Statistics. According to the histogram of per-class
object counts (on the left), classes in Argoverse 2.0 (AV2) follow a long tailed
distribution. Following [41] and nuScenes (Fig. 1.1), we report performance
for three groups of classes based on their cardinality (split by dotted lines):
Many, Medium, and Few. As AV2 does not provide a class hierarchy, we
construct one by referring to the nuScenes hierarchy (cf. Fig. 4.2 on the
right). . . . .
Breakdown Analysis of Misclassifications within Superclasses.
Fine-grained classes are most often confused by the dominant class (in blue)
in each superclass: (left) Vehicle is dominated by car, (mid) Pedestrian
is dominated by adult, and (right) Movable is dominated by barrier.
We find that class confusions are reasonable. Car is often mistaken for
truck. Similarly, truck, construction-vehicle and emergency-vehicle
are most often mistaken for car. Bicycle and motorcycle are sometimes
misclassified as car, presumably because they are sometimes spatially close
(within the 2m match threshold) to cars. Adults have similar appearance
to police-officer and construction-worker, and they are often co-
localized with child and stroller; all of these might cause significant class
confusion. . . . . . L. Lo
Correlation Between 2D AP and 3D AP. Although nuScenes is a 3D
detection benchmark, we can generate 2D annotations using the provided
sensor extrinsics by projecting the 3D annotations to the 2D image plane.
We find that evaluating 2D detectors using these 2D nuScenes annotations is
a good proxy task (x-axis) that is positively correlated with the downstream
performance of the full late-fusion pipeline (y-axis). Concretely training
2D detectors with more data (e.g. training with nuScenes and nulmages),
and using stronger 2D detectors (e.g. DINO) improves performance on the
proxy task as well as the downstream late-fusion algorithm. . . . . . . .
Failure Cases. Both our method (columns 1-3) and TransFusion [2]
(columns 4 -5) have the same failure cases. In the first and second row, the
2D RGB-detector DINO detects the heavily occluded cars but 3D LiDAR-
detector fails to detect them. As a result, the late-fusion predictions miss
these cars because our method throws away unmatched RGB-detections
for which we do not have accurate 3D information. In the third row, we
see that although both the LiDAR and RGB detectors fire on the object
(whose ground-truth label is police-officer), LIDAR-detector predicts
it as adult and RGB-detector predicts it as construction-worker. As a
result, the final detection is incorrect w.r.t the predicted categorical label.
TransFusion also misclassifies this object and predicts it as an adult.
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Chapter 1

Introduction

3D object detection is a key component in many robotics systems such as autonomous
vehicles (AVs) [4, 16]. To facilitate research in this space, the AV industry has released
large-scale 3D annotated multi-modal datasets [4, 7, 56]. However, these datasets
often only benchmark on a few common classes such as pedestrian and car. In the
real open world, safe navigation [57, 67] requires AVs to also reliably detect rare
objects such as child and stroller. This motivates our study of Long-Tailed 3D
Detection (LT3D), a problem that requires detecting objects from both common and
rare classes.

Status Quo. Among contemporary AV datasets, nuScenes [4] has exhaustively
annotated objects of various classes crucial to AVs (Fig. 1.1) and organizes them
with a semantic hierarchy (Fig. 3.1). As it focuses on only a few (common) classes,
prior works miss opportunities to exploit this semantic hierarchy during training. We
argue that these benchmarking protocols are flawed because detecting fine-grained
classes is useful for downstream tasks such as motion planning. This motivates us to
study LT3D (LT3D) by re-purposing all annotated classes in nuScenes. Importantly,
this challenging new problem is not simply solved by training state-of-the-art (SOTA)
methods on more classes [43], e.g., TransFusion [2], a SOTA multi-modal transformer-
based detector, achieves only 3.0 AP on the rare child class despite attaining 84.4
AP on the common car class.

Protocol. LT3D requires 3D localization and recognition of objects from each

of the common (e.g., adult and car) and rare classes (e.g, child and stroller).

1
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Figure 1.1: nuScenes Dataset Statistics. According to the histogram of per-class object
counts (on the left), the nuScenes benchmark focuses on the common classes in cyan (e.g.,
car and barrier) but ignores rare ones in red (e.g., stroller and debris). In fact, the
benchmark creates a superclass pedestrian by grouping multiple classes in green, including
the common class adult and several rare classes (e.g., child and police-officer); this
complicates the analysis of detection performance as pedestrian performance is dominated
by adult. Moreover, the ignored superclass pushable-pullable also contains diverse
objects such as shopping-cart, dolly, luggage and trash-can as shown in the top row
(on the right). We argue that AVs should also detect rare classes as they can affect AV
behavior. Following [41], we report performance for three groups of classes based on their
cardinality (split by dotted lines): Many, Medium, and Few.

Moreover, for safety-critical robots such as autonomous vehicles, we believe detecting
but mis-classifying rare objects (e.g., mis-classifying a child as an adult) is prefer-
able to failing to detect them at all. Therefore, we propose a new metric to quantify
the severity of classification mistakes that exploits inter-class relationships to award
partial credit (Fig. 3.1). We use both the standard and proposed metrics to evaluate

3D detectors on all classes.

Technical Insights. To address LT3D, we first retrain state-of-the-art LiDAR-
based 3D detectors on all classes. Naively retraining detectors produces poor perfor-
mance on rare classes (e.g., yielding 0.1 AP on child and 0.1 AP on stroller). We
propose several algorithmic innovations to improve these results. First, to encourage
feature sharing across common-vs-rare classes, we learn a single feature trunk, adding
in hierarchical coarse classes that ensure features will be useful for both common
and rare classes. Second, we find that LiDAR data is simply too impoverished for

even humans to recognize certain small tail objects, such as strollers. We propose
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Late-fusion requires matching and fusing uni-modal detections.

RGB etector LiDAR Detector

Figure 1.2: Late Fusion Overview. We extensively explore the simple late-fusion
framework for LT3D by ensembling RGB and LiDAR uni-modal detectors [43]. We
rigorously examine three critical components within this framework (Fig. 1.3) and propose a
simple method that fuses detections produced by a 2D RGB-detector (e.g., DINO [74]) and
a 3D LiDAR-detector (e.g., CenterPoint [72]). Our method achieves 51.4 mAP on LT3D
benchmarks based on the well-established nuScenes [4] dataset, significantly improving over
baselines by 12.2% (Table 4.1).

a simple late-fusion framework (Fig. 1.2) and study three critical design choices
(Fig. 1.3). First, we propose a simple approach that post-processes LiDAR-based
3D detections with monocular RGB-based 3D detections, filtering away detections
that are inconsistent across modalities. This significantly improves performance on
LT3D by 5 % AP on average, greatly boosting performance when allowing for partial
credit (e.g., achieving 16.9 / 38.8 AP for child / stroller). Next, we evaluate
the impact of using 2D RGB detectors instead of monocular 3D RGB detectors for
late-fusion, and find that the former is straightforward to train, can easily leverage
external data, and leads to higher AP averaged over all classes. This is practically
meaningful because annotating 2D boxes on RGB images is significantly cheaper
than aligning multi-modal RGB-LiDAR data and annotating them with 3D amodal
cuboids. Fourth, we consider the impact of matching RGB and LiDAR detections
on the 2D image plane instead of the 3D bird’s-eye-view (BEV). We contrast 2D
matching in the image-plane with prior work that performs 3D matching by lifting

3



1. Introduction

A. How do we incorporate RGB information? B. How do we match multi-modal detections? C. How do we fuse multi-modal detections?
2D RGB Detector 3D RGB Detector i Project 3D LiDAR detections Inflate 2D RGB detections
1 to 2D image plane to 3D BEV H

2D RGB Detections 3D LiDAR Detections

— =

Figure 1.3: Examining Late Fusion Strategies. We examine three key components in
effectively fusing RGB and LiDAR detectors. We explore: A. whether to train 2D or 3D
monocular RGB detectors for late-fusion, B. whether to match multi-modal detections in
the 2D image plane or 3D bird’s-eye-view (BEV), and C. how to optimally fuse matched
detections. Perhaps surprisingly, our exploration reveals that using 2D RGB detectors,
matching in the 2D image plane, and fusing scores probabilistically with calibration leads
to better LT3D performance.

2D detections to 3D (e.g., by relying on depth imputed from LiDAR points that
project into the 2D detections [43, 65]) and find that 2D matching is more robust.
Lastly, we explore score calibration prior to fusion. We find that calibrating our
detection scores improves rare class detection and enables probabilistic fusion of
LiDAR and RGB detections. Notably, this boosts performance compared to the
standard non-maximum suppression (NMS) fusion strategy.

Contributions. We make three major contributions. First, we formulate the
problem of LT3D, emphasizing detection of both common and rare classes in safety-
critical applications like AVs. Second, we design LT3D’s benchmarking protocol
and develop a supplemental metric that awards partial credit depending on the
severity of misclassifications (e.g., misclassifying child-vs-adult is less problematic
than misclassifying child-vs-car). Third, we propose several architecture-agnostic
approaches to LT3D, including a simple multimodal fusion technique that generalizes
across different RGB and LiDAR architectures. We conduct extensive experiments
to ablate our design choices and demonstrate that our simple method achieves
state-of-the-art results on LT3D benchmarks.



Chapter 2

Related Works

2.1 3D Object Detection for AVs

Contemporary approaches for 3D object detection can be broadly classified as LIDAR-
only, RGB-only, and sensor-fusion methods. Recent work in 3D detection is heavily
inspired by prior work in 2D detection [6, 38, 77]. LiDAR-based detectors like
PointPillars [30], CBGS [80], and PVRCNN++ [55] adopt an SSD-like architecture [38]
that regresses amodal bounding boxes from a bird’s-eye-view (BEV) feature map.
More recently, CenterPoint [72] adopts a center-regression loss that is inspired by
CenterNet [77]. Despite significant progress, LiDAR-based detectors often produce
many false positives because it is difficult to distinguish foreground objects from
background given sparse LiDAR returns. Monocular RGB-based methods have
gained popularity in recent years due to increased interest in camera-only perception.
FCOS3D [63] extends FCOS [59] by additionally regressing the size, depth, and
rotation for each object. More recently, methods such as BEVDet and BEVFormer
[24, 25, 33] construct a BEV feature-map by estimating the per-pixel depth of each
image feature [44].

PolarFormer [26] introduces a polar-coordinate transformation that improves
near-field detection. Importantly, many of these state-of-the-art 3D RGB detectors
are commonly pre-trained on large external datasets like DDAD [18]. Monocular
RGB detectors accurately classify objects but struggle to estimate depth, particularly
for far-field detections [21]. Despite recent advances in LIDAR and RGB 3D detectors,

5



2. Related Works

we find that multi-modal fusion is essential for LT3D (detailed next). Importantly,
using both RGB (for better recognition) and LiDAR (for better 3D localization)
helps detect rare classes. We study the late-fusion framework described in Fig 1.2 to
determine how to effectively fuse RGB and LiDAR uni-modal detectors for LT3D.

2.2 Multimodal 3D Detection

Conventional wisdom suggests that fusing multimodal cues, particularly using LiDAR
and RGB, can improve 3D detection. Intuitively, LIDAR faithfully measures the 3D
world (although it has notoriously sparse point returns), and RGB has high-resolution
(but lacks 3D information). Multimodal fusion for 3D detection is an active field of
exploration. Popular approaches can be categorized as input-fusion, feature-fusion,
and late-fusion. Input-fusion methods typically augment LiDAR points using image-
level features. For example, PointPainting [61] projects LIDAR points onto the output
mask of a semantic segmentation model and appends corresponding class scores to
each point. MVP [73] densifies regions of LiDAR sweeps that correspond with objects
in semantic segmentation masks. In contrast, Frustum PointNets [46] leverage 2D
RGB detections to localize objects within the box frustum using PointNets [45].

Recent works show that feature-fusion can be more effective than input-fusion.
PointFusion [69] fuses global image and point-cloud features prior to detection and
MSMDFusion [27] fuses LIDAR and RGB features at multiple scales. TransFusion [2]
and BEVFusion [39] fuse features in the BEV space using multi-headed attention.
Despite the success of transformers for detecting common objects, [43] finds that
TransFusion struggles to detect rare classes. We posit that the transformer architec-
ture, as adopted in TransFusion and BEVFusion, suffers from limited training data
(particularly for classes in the long tail). For transformers to work well in practice,
they should be trained on diverse, large-scale datasets [12, 47]. Further, end-to-end
trained multi-modal detectors require paired multi-modal data for training. Therefore,
we opt to study late fusion of uni-modal detectors, which do not require aligned
RGB-LiDAR paired training data.

CLOC:s [42] is a late-fusion method that learns a separate network to fuse RGB and
LiDAR detections, showing promising results for 3D detection. More recently, Peri et.

al. [43] introduces a simple non-learned filtering algorithm that effectively removes

6



2. Related Works

false-positive LiDAR-detections based on proximity to a 3D RGB detection. We
delve into this simple (non-learned) late-fusion framework, study three crucial design

choices, and present a method that significantly outperforms the state-of-the-art for
LT3D.

2.3 Long-Tailed Perception

AV datasets follow a long-tailed class distribution: a few classes like car and
pedestrian are dominant, while others like stroller and debris are rarely seen.
However, this problem is not unique to the AV domain. [50]. Long-Tailed Perception
(LTP) is a long-standing problem in the literature [41] and has been widely studied
through the lens of image classification, aiming for high accuracy averaged across
imbalanced classes [1, 41, 76].

Existing methods propose reweighting losses [5, 10, 23, 28, 29, 75|, rebalancing
data sampling [8, 13, 22|, balancing gradients computed from imbalanced classes [58],
and balancing network weights [1]. Others study LTP through the lens of 2D object
detection with RGB images [20]. Compared to 2D image-based recognition, 3D
long-tailed detection has unique opportunities and challenges because sensors such as
LiDAR directly provide geometric and ego-motion cues that are difficult to extract
from 2D images. Further, 2D detectors must detect objects of different scales due to
perspective image projection, dramatically increasing the complexity of the output
space (e.g., requiring more anchor boxes). In contrast, 3D objects do not exhibit
as much scale variation, but far-away objects tend to have sparse LiDAR returns,
imposing different challenges. Finally, 3D detectors often use class-aware heads (i.e.
each class has its own binary classifier) while 2D long-tail recognition approaches
typically use shared softmax heads.

Recently, CBGS [80] explicitly addresses rare-class 3D detection by up-sampling
LiDAR-sweeps with instances of rare classes, and pasting instances of rare objects
copied from different scenes. Although this works well for improving detection of
infrequently seen classes (e.g. classes with medium number of examples like bicycle
and construction vehicle), it does not provide significant improvement for classes
with only a few examples like debris and stroller. Additionally, rare classes, such

as child and stroller, are typically small in size and have a limited number of
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LiDAR returns. As a result, LIDAR-only detectors may struggle to accurately detect
these rare classes. In LT3D, we find a unique challenge: rare classes are not only
infrequent but are also difficult to distinguish using LiDAR alone. We address the
problem of LT3D in this work by fusing RGB and LiDAR uni-modal detectors.



Chapter 3

Method

To address LT3D, we first retrain SOTA 3D detectors on all classes, including
LiDAR-based detectors (PointPillars [30] and CenterPoint [72]), RGB-based detectors
(FCOS3D [63], PolarFormer [26], BEVFormer [33], YOLOV7 [62], and DINO [74]),
and multimodal detectors (TransFusion [2], BEVFusion [39], and Deeplnteraction
[71]). We further introduce several modifications that consistently improve their

LT3D performance.

3.1 Grouping-Free Detector Head

Extending existing 3D detectors to train with more classes is surprisingly challenging.
Many contemporary networks use a multi-head architecture that groups classes of
similar size and shape to facilitate efficient feature sharing. For example, CenterPoint
groups pedestrian and traffic-cone since these objects are both tall and skinny.
However, multi-headed grouping strategies may not work for diverse classes like
pushable-pullable and debris and are difficult to scale for a large number of
classes. Therefore, we first consider making each class its own group to avoid hand-
crafted grouping heuristics. However, learning a class-specific head easily overfits
to rare-classes. Our solution is to merge all classes into a single group with a
proportionally heavier (single) detector head to simplify training. Our group-free
(i.e. single-head) architecture has a shared backbone across all classes, and each

class has only one linear layer per-class. This significantly reduces the number of
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Figure 3.1: nuScenes Semantic Hierarchy. nuScenes defines a semantic hierarchy (on
the left) for all annotated classes (Fig. 1.1). We highlight common classes in white and
rare classes in gold. The standard nuScenes benchmark makes two choices for dealing with
rare classes: (1) ignore them (e.g., stroller and pushable-pullable), or (2) group them
into coarse-grained classes (e.g., adult, child, construction-worker, police-officer
are grouped as pedestrian). Since the pedestrian class is dominated by adult (Fig. 1.1),
the standard benchmarking protocol masks the challenge of detecting rare classes like
child and police-officer. We leverage this hierarchy during training (on the right) by
predicting class labels at multiple levels of the hierarchy. Specifically, we train detectors to
predict three labels for each object: its fine-grained label (e.g., child), its coarse class (e.g.,
pedestrian), and the root-level class object. This means that the final vocabulary of
classes is no longer mutually exclusive, complicating the application of multi-class softmax
losses. To address this, use a sigmoid focal loss that learns separate spatial heatmaps for
each class.

parameters and allows learning the shared feature backbone collaboratively with all
classes, effectively mitigating overfitting to rare-classes. Adding a new class is as
simple as adding a single linear layer to the detector head. In addition, we show
that our grouping-free detector head achieves improved accuracy over grouping-based
methods.

3.2 Training with Semantic Hierarchies

nuScenes defines a semantic hierarchy (Fig. 3.1) for all classes, grouping semantically
similar classes under coarse-grained categories. We leverage this hierarchy during
training. Specifically, we train detectors to predict three labels for each object: its
fine-grained label (e.g., child), its coarse class (e.g., pedestrian), and the root class
object. We adopt a grouping-free detector head that outputs separate “multitask”

heatmaps for each class, and use a per-class sigmoid focal loss rather than multi-class
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cross-entropy loss. It is worth noting that this simple “multitask” learning strategy
does not necessarily enforce a hierarchy, and can be extend to more complex label
relationships. Crucially, because we do not employ softmax losses, adding a vehicle
heatmap does not directly interfere with the car heatmap (as they would with a
multi-class softmax loss). However, this might produce repeated detections on the
same test object. We address that by simply ignoring coarse detections at test time.
We explore alternatives and conclude that they achieve similar LT3D performance.
Perhaps surprisingly, this training method improves detection performance not only

for rare classes, but also for common classes.

3.3 Augmentation Schedule

Class-balanced resampling is a common technique in learning with long-tailed distri-
butions. This augmentation strategy increases the number of rare objects seen in
training but skews the class distribution and leads to more false positives for rare
classes in inference. Prior works [2, 61] suggest disabling class-balanced resampling
for the last few training epochs to better match the real class distribution, reducing
false positives. We validate this approach in training 3D detectors and find that
it often improves performance for rare classes at the cost of common classes. This
further suggests that strategies that work for common classes may not work in the

long-tail, further emphasizing the need to study LT3D.

3.4 Late-Fusion of RGB and LiDAR for LT3D

As depicted in Fig. 1.2, our simple late-fusion framework ensembles uni-modal RGB
and LiDAR detectors respectively. Within this framework, we investigate three crucial
design choices previewed in Fig. 1.3. We first describe the benefits and drawbacks of
using 2D and monocular 3D RGB detectors in Sec 3.4.1, present simple algorithms
for matching RGB and LiDAR-detections in Sec. 3.4.2, and finally describe score

calibration and fusion in Sec. 3.4.3.
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3.4.1 How Do We Incorporate RGB Information?

Although LiDAR offers accurate localization, contemporary LiDAR detectors predict
numerous false positives due to the challenging task of distinguishing foreground
objects from the background using sparse LIDAR points alone. RGB images provide
complementary information that is essential for identifying objects and disambiguating
semantically similar classes. Therefore, we focus on identifying which RGB detectors
can be best fused with 3D LiDAR detectors. We compare the impact of using
monocular 3D RGB detectors and 2D RGB detectors below.

2D RGB Detectors. 2D object detection is a fundamental problem in computer
vision [15, 35, 51] that has matured in recent years. Large-scale 2D detection datasets
are widely available, and model trade-offs are well understood [37, 38, 49, 51]. As 2D
detectors do not predict 3D attributes like depth and rotation, understanding how to
best leverage 2D detectors in the context of long-tailed 3D detection is a key challenge.
In this work, we consider two state-of-the-art 2D RGB detectors, YOLOV7 [62] and
DINO [74]. YOLOVT is a real-time detector that identifies a number of training
tricks that nearly doubles the inference efficiency over prior work without sacrificing
performance. Similarly, DINO is a recent transformer-based detector that improves

upon DETR [6] using denoising anchor boxes.
3D RGB Detectors. RGB-based 3D object detection is more complex than

conventional 2D detection, as it requires additional predictions such as depth and
orientation [3, 63]. Importantly, 3D RGB detection is an ill-posed problem due
to the inconsistency between the 2D input data and the 3D output predictions.
To address this problem, FCOS3D transforms the commonly defined 7-DoF 3D
targets to the image domain and decouples them as 2D and 3D attributes [63].
Moreover, 3D RGB detection is challenging because it relies on accurate sensor
extrinsics to transform 3D detections between the global and image coordinate frame.
Since annotating 3D amodal cuboids is both expensive and non-trivial (compared to
bounding-box annotations for 2D detection), datasets for monocular 3D RGB detection
are considerably smaller and less diverse than their 2D detection counterparts. For
example, nuScenes (published in 2020) annotates 144K RGB images of 23 classes
[4] while COCO (an early 2D detection dataset published in 2014) annotates 330K

images [35] of 80 classes.
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Our Results
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Figure 3.2: Qualitative Improvement From Multi-Modal Late Fusion. Late-fusion
of 2D RGB and 3D LiDAR detections improves LT3D performance. Projecting 3D LiDAR
detections onto the image-plane makes matching RGB and LiDAR detections more robust.
In contrast, matching inflated 2D RGB detections in the 3D BEV is more challenging due
to noisy depth estimates. We find that late-fusion is able to boost the confidence score of
LiDAR-based detections when both LiIDAR and RGB detections agree, and correct labels
when they don’t agree. For example, our late fusion algorithm correctly relabels predictions
with semantically similar (according to the nuScenes labeling hierarchy [43]), but visually
distinct classes like adult and stroller, or adult and child.

Although adapting these 2D detectors for multi-modal filtering of 3D LiDAR-based
detections is challenging, training 2D RGB detectors only requires 2D bounding box
annotations, which is significantly cheaper to collect than 3D cuboids used for 3D
RGB-detector training [63]. In addition, 2D RGB detectors can leverage diverse,
publicly available 2D detection datasets to train better 2D detectors [31, 48, 64, 70, 79)].
We further demonstrate that using “freely available” 2D detection datasets helps
train stronger 2D detectors that further improve LT3D performance. Particularly,
when scaling up the 2D training data, late-fusion boosts average performance by 2.6

mAP, and improves rare class mAP by 3.5%.

3.4.2 How Do We Match Multi-Modal Detections?

Small fine-grained classes are challenging to identify from sparse (LiDAR) geometry

alone, suggesting that multimodal cues can improve long-tailed detection. We evaluate
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several multimodal fusion algorithms, but find that a simple strategy of post-hoc
fusion works remarkably well. Finding correspondence between two sets of uni-modal
detections is an essential step prior to late-fusion (Fig. 1.3A). However, this matching
process is non-trivial when considering RGB and LiDAR-based detections. We
present two approaches for matching between modalities, and empirically evaluate
the effectiveness of each method.

Option 1: Spatial Matching in the 2D Image Plane. We explore two
potential implementations of this below. Using the provided sensor extrinstics, we
can project 3D LiDAR detections onto the 2D image plane [42]. Next, we use the
IoU metric to determine overlap between (projected) LIDAR and 2D RGB detections.
We determine that a 2D RGB detection and (projected) 3D LiDAR detection match
if the IoU is greater than a fixed threshold. Although conceptually simple, we find
that it works well.

In principle, we can project 3D RGB detections onto the 2D image plane, but we
find that using 2D RGB detections works better in practice.

Option 2: Spatial Matching in 3D BEV. We explore two potential implemen-
tations of this below. First, we can use a 3D RGB detector to filter out high-scoring
false-positive LIDAR detections by leveraging two insights: (1) LiDAR-based 3D-
detectors are accurate w.r.t 3D localization and yield high recall (though classification
is poor), and (2) RGB-based 3D-detections are accurate w.r.t recognition (though
3D localization is poor). Fig. 3.3 demonstrates this matching strategy. For each
RGB-based detection, we keep LiDAR-based detections within a radius of m meters
and remove all the others (that are not close to any RGB-based detections).

Similarly, matching 2D RGB detections in the 3D BEV is an ill-posed problem
because it is impossible to precisely estimate depth using a single monocular RGB
image. Instead, we inflate the 2D RGB detection using the mediod of the LiDAR
points within the frustum of the 2D predicted boxes [46]. We find that it is crucial to
filter out LIDAR returns from (far-away) background points (c.f. Fig. 4.1). Specifically,
since LiDAR points on the edge of an object produce a depth discontinuity (adding
noise to the depth prediction), we opt to estimate depth using points in a small region
around the center of the bounding box.

We empirically evaluate both options and find that spatially matching 2D RGB
detections and 3D LiDAR detections in the 2D image plane works best in practice.
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Figure 3.3: Multi-Modal Filtering. Spatial matching in 3D BEV effectively removes
high-scoring false-positive LIDAR detections. The green boxes are ground-truth strollers,
while the blue boxes are stroller detections from our best performing models, LiDAR-
based detector CenterPoint [72] (left) and RGB-based detector FCOS3D [63] (mid). The
final filtered result removes LiDAR detections not within m meters of any RGB detection
(right).

Handling Unmatched Detections. After spatially matching RGB and Li-
DAR detections, we often have three categories of detections to consider: matched
detection, unmatched RGB detections, and unmatched LiDAR detections. For 2D
RGB-detections that do not match with any LiDAR-detections, we simply remove
these predictions. Since LiDAR detectors achieve high recall, any RGB detections
that are unmatched are likely to be false positives On the other hand, for 3D Li-
DAR detections that do not match with any RGB-detections, we down-weight their

confidence scores by multiplying by w which is tuned via validation (w = 0.4).

Semantic Matching. As illustrated by Fig. 1.3C, detections may match spatially,
but not semantically. To address this, we propose a semantic matching heuristic to
better fuse LiDAR and RGB detections. Given a pair of spatially matched RGB
and LiDAR detections, we consider two cases. If both modalities predict the same
semantic class, we perform score-fusion (which we describe next). Otherwise, if both
modalities predict different semantic classes, we use the confidence score and label of
the RGB prediction. Intuitively, we expect that RGB detectors can more reliably
predict semantics from high resolution images. This simple method helps correct

misclassifications produced by the 3D LiDAR-detector, as shown in Fig. 3.2.
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3.4.3 How Do We Fuse Multi-Modal Detections?

Although LiDAR-based detectors are widely adopted for 3D detection, we find
that they produce many high-scoring false positives (FPs) for rare classes due to
misclassification. We address these FPs by either removing them via multi-modal
filtering [43], or down-weighting their confidence via score calibration and fusion. We
empirically evaluate the effectiveness of each method and find that score calibration

and fusion works the best.

Score Calibration and Fusion. Score calibration of matched detections pro-
duced by different uni-modal detectors is required to accurately compare detec-
tions w.r.t their confidence scores for late-fusion. We explore score calibration of
matched RGB detections zrgp and LiIDAR detections xrpar in the context of late-
fusion (cf. Fig. 1.3C) below. Following [9], we assume independent class prior
p(c), and conditional independence given the class label, i.e., p(xrgp, TLiDAR|C) =
p(zrasle)p(zripar|c). We denote the posteriors for class-c as p(c|zragp) and p(c|zLipar),

and the fused score / posterior p(c|zripar, Tripar). We have

p(c|zripAR, TLiDAR) (3.1)
_ p(l’LiDAR,xLiDAR\C)p(C) Bayes Rule (3‘2)
p(l"LiDAR, fBLiDAR)

o< p(TLiDAR, TLiDAR|C)P(C) (3.3)

x p(c|xRGB)€()C [1ipar) Conditional Independence (3.4)
p(c

- p(c‘xRGB)p(C‘-TLiDAR) (3'5)
p(c)

This suggests that optimal calibration requires tuning class prior p(c). However,
tuning class priors p(c) is exponentially expensive w.r.t an mAP measure. Therefore,
we tune them greedily, one by one ordered by class cardinality. Further, we also tune
a temperature on the logits [9, 19]. The overall score calibration improves LT3D
performance from 44.6 to 45.0 in mAP. After calibrating all classes, we fuse scores for
matched uni-modal detections. Inspired by [9], we explore probabilistic fusion and
non-maximal suppression (NMS). Intuitively, fusing scores with NMS is equivalent

to performing a max-pooling operation on matched detections. In contrast, if two

16



3. Method

detections fire on the same object, the fused score should be larger than the individual
scores because there is more evidence. We find that probabilistic fusion results in an

additional 0.5 AP improvement averaged over all classes compared to NMS.
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Chapter 4

Experiments

We conduct extensive experiments to better understand the LT3D problem, and gain

insights by validating our techniques described in Chapter 3. Specifically, we aim to

answer the following questions:!

1. Are rare classes more difficult to detect than common classes?

2. Are objects from rare classes sufficiently localized but mis-classified?

3. Does training with the semantic hierarchy improve detection performance for
LT3D?

4. Does multimodal fusion help detect rare classes?

4.1 Implementation Detalils.

We follow the training procedure of the respective detectors which have open-source

code. We describe important implementation details below.

e nput. We adopt 10-frame aggregation for LiDAR densification when training
LiDAR-based detectors on nuScenes and a 5-frame aggregation on Argoverse 2.
We assume that we are provided with ego-vehicle poses for prior frames to align
all LIDAR sweeps to the current ego-vehicle pose. Since LiDAR returns are
sparse, this densification step is essential for accurate 3D detection. By default,

we train the 2D RGB detectors on the 2D bounding boxes derived by projecting

! Answers: yes, yes, yes, yes.
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3D annotations to the 2D image plane and additionally train with 2D bounding
boxes from nulmages where denoted. Our 2D RGB detectors YOLOV7 and
DINO are pre-trained on the ImageNet [11] and COCO [34] datasets.

® Model Architecture. We adopt the architecture in [80] but make an important
modification. The original architecture (for the standard nuScenes benchmark)
has six heads designed for ten classes; each head has 64 filters. We first adapted
this architecture for LT3D using seven heads designed for 18 classes. We then
replace these seven heads with a single head consisting of 512 filters shared by

all classes.

e Training Losses. We use the sigmoid focal loss (for recognition) [37] and L1
regression loss (for localization) below. Existing works also use the same losses
but only with fine labels; we apply the loss to both coarse and fine labels.
Concretely, our loss function for CenterPoint is as follows: L = Ly + ALgrga,
where Ly = ZiC:O SigmoidFocal Loss(X;,Y;) and Lrre = | Xsox — Yeox|,
where X; and Y; are the i*" class’ predicted and ground-truth heat maps, while
Xpox and Ypoyx are the predicted and ground-truth box attributes. Without
our hierarchical loss, C=18. With our hierarchical loss, C=22 (18 fine grained
+ 3 coarse + 1 object class). A is set to 0.25. Modifications for other detectors

similarly follow.

e Optimization.  We train all LiDAR~only detectors for 20 epoch using an
AdamW optimizer and a cyclic learning rate. We adopt a basic set of data
augmentations, including global 3D tranformations, flip in BEV, and point
shuffling during training. We train our model with 8 RTX 3090 GPUs and a
batch size of 1 per GPU. The training noise (from random seed and system
scheduling) is < 1% of the accuracy (standard deviation normalized by the

mean).

e Post-processing. We use non-maximum suppression (NMS) on detections within
each class to suppress lower-scoring detections. In contrast, existing works
apply NMS on all detections across classes, i.e., suppressing detections overlap-
ping other classes’ detections (e.g., a pedestrian detection can suppress other

pedestrian and traffic cone detections).

Datasets. We use nuScenes [4] and Argoverse 2 (AV2) [66] to explore LT3D. Both
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have fine-grained classes (18 and 26 classes in nuScenes and AV2 respectively) that
follow long-tailed distributions. To quantify the long-tail, we calculate the imbalance
factor (IF), defined as the ratio between the numbers of annotations of the max-
class and min-class [5]; nuScenes and AV2 have IF=1670 and 2500 respectively —
significantly more imbalanced than existing long-tail image recognition benchmarks,
e.g., iNaturalist (IF=500) [60] and ImageNet-LT (IF=1000) [40]. NuScenes arranges
classes in a semantic hierarchy (Fig. 3.1); AV2 does not provide a semantic hierarchy
but we construct one based on the nuScenes’ hierarchy. Following prior work, we use

official train-sets for training and evaluate on the official val-sets.

4.2 Evaluation Metrics

Conceptually, LT3D extends the traditional 3D detection problem, which focuses
on identifying objects from K common classes, by further requiring detection of N
rare classes. As LT3D emphasizes detection performance on all classes, we report
the metrics for three groups of classes based on their cardinality (Fig. 1.1-left): many
(>50k instances per class), medium (5k~50k), and few (<5k). We describe the metrics
below.

Standard Detection Metrics. Mean average precision (mAP) is an established
metric for object detection [14, 16, 36]. For 3D detection on LiDAR sweeps, a true
positive (TP) is defined as a detection that has a center distance within a distance
threshold on the ground-plane to a ground-truth annotation [4]. mAP computes the
mean of AP over classes, where per-class AP is the area under the precision-recall
curve, and distance thresholds of [0.5, 1, 2, 4] meters.

Hierarchical Mean Average Precision (mAPy). For safety critical applica-
tions, although correctly localizing and classifying an object is ideal, detecting but
misclassifying some object is more desirable than a missed detection (e.g., detecting
but misclassifying a child as an adult is better than not detecting this child). There-
fore, we introduce hierarchical AP (AP ) which considers such semantic relationships
across classes to award partial credit.

To encode these relationships between classes, we leverage the semantic hierarchy
(Fig. 3.1) defined by nuScenes. We derive partial credit as a function of semantic

similarity using the least common ancestor (LCA) distance metric. Hierarchical
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metrics have been proposed for image classification [53], but have not been extensively
explored for object detection. Extending this metric for object detection is challenging
because we must consider how to jointly evaluate semantic and spatial overlap. For
clarity, we will describe the procedure in context of computing APy for some arbitrary

class C.

e LCA=0: Consider the predictions and ground-truth boxes for C'. Label the
set of predictions that overlap with ground-truth boxes for C' as true positives.
Other predictions are false positives. This is identical to the standard AP

metric.

e LCA=1: Consider the predictions for C', and ground-truth boxes for C' and
all sibling classes of C' (that have LCA distance to C of 1). Label the set of
predictions that overlap a ground-truth box of C' as a true positive. Label
the set of predictions that overlap sibling classes as ignored [36]. All other

predictions for C' are false positives.

e LCA=2: Consider the predictions for C' and ground-truth boxes for C' and all
sibling classes of C' (that have LCA distance to C' less than 2. For nuScenes,
this includes all classes.) Label the set of predictions that overlap ground-truth
boxes for C' as true positives. Label the set of predictions that overlap other

classes as ignored. All other predictions for C' are false positives.

4.3 nuScenes Results

We first start by evaluating existing uni-modal and multi-modal models on the popular
nuScenes dataset. Benchmarking SOTA models yields poor performance for rare
classes on the nuScenes-LT3D benchmark, highlighting the importance of addressing
3D detection in the long tail setting rather than only focusing on common categories.

Retraining State-Of-The-Art 3D Detectors for LT3D. We retrain several 3D
detectors, namely FCOS3D [63], PolarFormer [26], BEVFormer [33], PointPillars [30],
CenterPoint [72], TransFusion [2], and Deeplnteraction [71]. FCOS3D, PolarFormer
and BEVFormer operate on monocular images. PointPillars and CenterPoint take
an aggregated stack of LiDAR-sweeps as input. TransFusion and Deeplnteraction
take both RGB frames and LiDAR sweeps as input. All models predict 3D bounding
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Table 4.1: Comparison with the nuScenes State-of-the-Art. We find that our
late-fusion approach of fusing 3D LiDAR and 2D RGB detections in the 2D image plane
using score calibration and probabilistic ensembling performs the best on all categories,
notably improving performance for classes with medium and few examples.

Method MM Many Medium Few  All
FCOS3D (RGB-only) [43] 300 233 29 209
BEVFormer (RGB-only) [33] 52.3 316 14 27.3
PolarFormer (RGB-only) [26] 54.0 31.6 22 280
PointPillars (LiDAR-only) [30] 642 284 34 300
CenterPoint (LiDAR-only) [43] 76.4 43.1 3.5  39.2
TransFusion (LiDAR + RGB) [2] v 73.9 41.2 9.8 398

DeeplInteraction (LiIDAR + RGB) [71] v 76.2 51.1 79 437
Multi-Modal Late-Fusion (Ours) v 779 594 200 514

boxes for 18 classes as defined by the nuScenes LT3D protocol. As shown in Table
4.1, LiDAR-based detectors perform well on common classes, but struggle on classes
with few examples. This is unsurprising as it is difficult to identify rare objects from
sparse LIDAR points alone. However, we find that multi-modal models achieve strong
performance across all cateogires.

End-to-End Multi-Modal Methods. We find that TransFusion [2] and DeepIn-
teraction [71], which fuses both RGB and LiDAR, are able to perform better than the
LiDAR-only models, suggesting that multi-modal input can improve object detection
by removing false positives. TransFusion marginally improves over CenterPoint over-
all, but provides considerable performance gains for rare classes, improving by 6.4%.
Deeplnteraction provides modest improvements over TransFusion, notably improving
on classes with many examples by 2.3% and medium examples by 9.9%. Although
DeeplInteraction beats CenterPoint by 3.5% overall, it requires complex multi-stage
training pipelines and paired multi-modal data. We aim to simplify multi-modal
training via late fusion, which we describe below.

Multi-Modal Late-Fusion. Our late-fusion approach combines 3D LiDAR
detections with 2D RGB detections in the 2D image plane using score calibration
and probabilistic ensembling. We compare our approach against other methods in
Table 4.1 and provide qualitative results in Fig. 3.2. By carefully considering design

choices outlined in Fig. 1.3, we are able to improve over the prior state-of-the-art by
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Figure 4.1: Failure Mode of Inflating 2D Detections via LIDAR Points. We find
that 3D BEV filtering using inflated 2D detections does not work well due to noisy depth
predictions. For example, background points on fences and on trees leads to imperfect
depth prediction from inflation. Attempting to filter 3D LiDAR detections using these
noisy inflated 2D RGB detections in the BEV introduces many missed-detections and false
positives.

12.2%. As shown in Fig. 3.2, we find that RGB-based depth predictions are often
incorrect, leading to suboptimal matching and filtering. Naively using LIDAR depth
to inflate 2D detections into the 3D BEV for matching and filtering yields poor results
due to noisy LiDAR returns (c.f. Fig. 4.1). As a result, we simply opt to project all
detections onto the 2D image plane to factor out the impact of depth estimation on

matching.
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Table 4.2: nuScenes Per-Class Breakdown. Multi-modal models like DeepInteraction
and our late-fusion approach achieve the highest per-class AP on 8 out of 10 classes shown
below. Out late-fusion approach significantly improves over Deeplnteraction, improving
bicycle accuracy by 5.8%, construction worker by 15.2 %, stroller by 6.8 %, and
pushable-pullable by 17.3 %. Note, CV is construction vehicle, MC is motorcycle, PP
is pushable-pullable, CW is construction-worker, and Stro. is stroller. We highlight
classes with Medium and Few examples per class in blue.

Method Car Adult Truck CV Bicy MC Child CW Stro. PP
FCOS3D [63] 52.1 46.5 28.7 10.0 314 372 21 202 44 26.6
CenterPoint[72] 87.7 86.7 616 284 496 659 1.1 285 51 349
TransFusion [2] 84.4 84.2 584 245 46.7 60.8 3.1 21.6 13.3 25.3
Deeplnteraction [71] 84.9 85.9 63.2 353 64.3 76.2 6.0 30.7 30.9 30.8
Ours 86.3 86.2 60.6 35.3 70.1 759 8.8 55.9 37.7 58.1

Table 4.3: Comparison with the Argoverse 2 State-of-the-Art. We present results
AV?2 evaluated at 50 meters. FCOS3D achieves poor performance, likely due to inaccurate
depth estimates. In contrast, CenterPoint achieves strong performance on all classes.
Our multi-modal fusion approach significantly improves over CenterPoint, achiving 8.3%
improvement averaged over all classes. These results on AV2 are consistent with those on
nuScenes (cf. Table 4.1), demonstrating the general applicability of our approach.

Method Multimodal Many Medium  Few A1l
FCOS3D [63] (RGB-only) 974 170 7.8 146
CenterPoint [72] (LiDAR-only) 774 46.9 30.2  44.0
Multi-Modal Late Fusion (Ours) v 89.4 54.2 38.7 523

4.4 Argoverse 2 Results

We present results on the large-scale Argoverse 2 (AV2) dataset, another long-tailed
dataset developed for autonomous vehicle research (Fig. 4.2 on the left). AV2
evaluates on 26 classes, which follow the long-tailed distribution. As AV2 does not
provide a semantic hierarchy, we construct one (cf. Fig. 4.2 on the right) by adapting
the nuSccenes hierarchy. As show in Table 4.3, our main conclusions from nuScenes
still hold for AV2. FCOS3D yields poor performance on all classes, likely due to
inaccurate depth estimates. CenterPoint performs considerably better, achieving high
accuracy on classes with many examples. Notably, CenterPoint performs better on

AV2’s rare classes (30.2 AP) compared to nuScenes’s rare classes (3.5 AP), likely
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Figure 4.2: Argoverse 2 Dataset Statistics. According to the histogram of per-class
object counts (on the left), classes in Argoverse 2.0 (AV2) follow a long tailed distribution.
Following [41] and nuScenes (Fig. 1.1), we report performance for three groups of classes
based on their cardinality (split by dotted lines): Many, Medium, and Few. As AV2 does
not provide a class hierarchy, we construct one by referring to the nuScenes hierarchy (cf.
Fig. 4.2 on the right).

because AV2 has more examples per-class in-the-tail. Lastly, our proposed late-fusion
approach yields an 8.3% improvement overall, improving performance for classes of
all cardinalities. These new results on AV2 are consistent with those on nuScenes,

demonstrating the general applicability of our approach.

4.5 Ablation Studies

We design a set of experiments to understand the impact of hierarchies, network
architecture, and ablate different strategies for late fusion. We perform all ablation

experiments on the nuScenes dataset.

4.5.1 Analysis on Hierarchies

Semantic classes are often organized within a hierarchy, e.g., tail classes such as
child and construction-worker are arguably subclasses of pedestrian. However, such
hierarchical relationships are often ignored, which may yield misleading estimates

of performance and missed opportunities for algorithmic innovation. We develop
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Table 4.4: Impact of Semantic Hierarchies and Data Aug. (measured by mAP).
Training with the semantic hierarchy improves all methods for LT3D, e.g., improving by
1% AP averaged over All classes. Data augmentation schedules do not necessarily improve
LT3D performance, demonstrating the challenge of 3D detection in the long-tail.

Method Multimodal Many Medium Few A1l
PointPillars (LiDAR-only) [30] 64.2 284 3.4 30.0
+ Hierarchy 66.4 304 2.9 31.2

w/ Data Aug. 54.4 24.2 1.8 25.1
CenterPoint (LiDAR-only) [72] 76.4 43.1 3.5 39.2
+ Hierarchy 77.1 45.1 4.3 40.4

w/ Data Aug. 73.8 44.5 7.4 40.3

hierarchical losses that promote feature sharing across common-vs-rare classes, as
well as improved detection metrics that award partial credit to “reasonable” mistakes
respecting the hierarchy (e.g., mistaking a child for an adult).

Training with Semantic Hierarchy. We modify our LiDAR-based detectors to
jointly predict class labels at different levels of the semantic hierarchy. For example,
we modify the detector to additionally classify stroller as pedestrian and object.
The semantic hierarchy naturally groups classes based on shared attributes and may
have complementary features. Moreover, training with the semantic hierarchy allows
rare classes within each group to learn better features by sharing with common classes.
This approach is generally effective, as shown in Table 4.4, improving accuracy for
classes with Many examples by 2%, Medium examples by 2% and Few examples by 1%.

Data Augmentation Schedule. Prior works [2, 69] suggest disabling copy-paste
augmentation for the last few epochs of training to reduce the number of false positive
detections. We validate this claim for various detector architectures and find that
although it seems to help rare classes by 3% AP, but hurts common classes by 4%
AP (c.f. CenterPoint).

Analysis of Misclassifications. For 3D detection, localization and classification
are two important measures of 3D detection performance. In practice, we cannot
achieve perfect performance for either. In safety-critical applications, detecting
but misclassifying objects (as a semantically related category) is more desirable
than a missed detection (e.g., detect but misclassify a child as adult versus not

detecting this child). Therefore, we introduce hierarchical AP (AP ), which considers
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Vehicle Pedestrian Movable

Figure 4.3: Breakdown Analysis of Misclassifications within Superclasses. Fine-
grained classes are most often confused by the dominant class (in blue) in each superclass:
(left) Vehicle is dominated by car, (mid) Pedestrian is dominated by adult, and (right)
Movable is dominated by barrier. We find that class confusions are reasonable. Car is often
mistaken for truck. Similarly, truck, construction-vehicle and emergency-vehicle
are most often mistaken for car. Bicycle and motorcycle are sometimes misclassified as
car, presumably because they are sometimes spatially close (within the 2m match threshold)
to cars. Adults have similar appearance to police-officer and construction-worker,
and they are often co-localized with child and stroller; all of these might cause significant
class confusion.

such semantic relationships across classes to award partial credit. Applying this
hierarchical AP reveals that classes are most often misclassified as their LCA=1
siblings within coarse-grained superclasses. We use confusion matrices to further
analyze the misclassifications within superclasses, as shown in Fig. 4.3. Below, we
explain how to compute a confusion matrix for the detection task.

For each superclass, we make a confusion matrix, in which the entry (4, j) indicates
the misclassification rate of class-i objects as class-j. Specifically, given a fine-grained
class 7, we find its predictions that match ground-truth boxes within 2m center-distance
of class-i and all its sibling classes (LCA=1, within the corresponding superclass);
we ignore all unmatched detections. This allows us to count the misclassifications of
class-7 objects into class-j.

Impact of Hierarchical Training and Inference. Classic methods train a
hierarchical softmax (in contrast to our simple approach of sigmoid focal loss with
both fine and coarse classes), where one multiplies the class probabilities of the

hierarchical predictions during training and inference [68]. We implemented such an
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Table 4.5: Diagnosis using the mAPy metric on selected classes. We analyze the
best-performing LiDAR-only model CenterPoint with and without our hierarchical loss.
Comparing the rows of LCA=0, we see our techniques bring significantly improvements on
classes with medium and few examples such as construction-vehicle (CV), bicycle,
motorcycle (MC), construction-worker (CW), stroller, and pushable-pullable
(PP). Moreover, performance increases significantly from LCA=0 to LCA=1 compared
against LCA=1 to LCA=2, confirming that objects from rare classes are often detected
but misclassified as some sibling classes.

Method mAPy  Car Adult Truck CV Bicycle MC Child CW Stroller PP

LCA=0 824 812 494 19.7 336 489 0.1 142 01 21.7

Cenge;gomt LCA=1 839 820 587 205 352 505 0.1 183 0.1 220

LCA=2 840 824 588 207 364 51.0 01 195 0.1 226

ConterPoin UCA=0 881 863 627 245 485 628 01 222 43 327

Giof _F(;ee LCA=1 89.0 87.1 71.6 267 502 647 01 294 45 329

P LCA=2 89.1 87.5 71.7 268 511 652 01 305 48 334

. LCA=0 88.6 86.9 63.4 257 50.2 632 01 253 87 368
CenterPoint

LCA=1 89.5 87.6 72.4 275 522 652 0.1 324 94 37.0

w/ Hierarchy 1o\ o g9.6 88.0 72.5 277 532 657 0.1 340 98 376

approach, but found the training did not converge. Interestingly, [68] shows such
a hierarchical softmax loss has little impact on long-tailed object detection (in 2D
images), which is one reason they have not been historically adopted. Instead, we
found better results using the method from [32] (a winning 2D object detection
system on the LVIS [20] benchmark) which multiples class probabilities of predictions
(e.g. Pcar = Popy * Pcar) at test-time, even when such predictions are not trained
with a hierarchical softmax. We tested three additional variants and compared it to
our approach (which recall, uses only fine-grained class probabilities at inference).

Table 4.6 compares their performance for LT3D.

(a) Ours (e.g., Finegrain score only)

(b) Object score * Finegrain score ([32], e.g. Poar = Pops * Poar)

(c) Coarse score * Finegrain score (Variant-1 of [32], e.g. Poar = Pvenicre*Poar)
)

(d) Object score * Coarse score * Finegrain score (Variant-2 of [32], e.g. Poar =

Pops* Pyericre * Poar)

Unlike [32, 68] which require a strict label hierarchy, our approach is not limited
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Table 4.6: Impact of Hierarchical Softmax. Different variants achieve similar per-
formance. We note that other methods do improve accuracy in the tail by sacrificing
performance in the head, suggesting that hybrid approaches that apply different techniques
for head-vs-tail classes may further improve accuracy. Unlike [32, 68] which requires a strict
label hierarchy, our approach is not limited to a hierarchy.

Method Hierarchy Many Medium Few A1l
CenterPoint (w/o Hierarchy) [72] n/a 76.4 43.1 3.5 39.2
(a) 77.1 45.1 43 404

. . (b) 76.4 45.0 53 40.5
CenterPoint w/ Hierarchy (o) 6.5 45.2 59 40.6
(d) 74.5 43.5 56 395

to a hierarchy. We find that other hierarchical methods improve accuracy in the tail
by sacrificing performance in the head, suggesting that hybrid approaches that apply

different techniques for head-vs-tail classes may further improve accuracy.

4.5.2 Analysis on Architecture

Many contemporary networks use a multi-head architecture that groups classes of
similar size and shape to facilitate efficient feature sharing. For example, CenterPoint
groups pedestrian and traffic-cone since these objects are both tall and skinny.
We study the impact of grouping for both the standard and LT3D problem setups.
We define the groups used for this study below. Each group is enclosed in curly

braces. Our group-free head includes all classes into a single group.

e Original: {Car}, {Truck, Construction Vehicle}, {Bus, Trailer}, {Barrier},
{Motorcycle, Bicycle}, {Pedestrian, Traffic Cone}

e LT3D: {Car}, {Truck, Construction Vehicle}, {Bus, Trailer}, {Barrier},
{Motorcycle, Bicycle}, {Adult, Child, Construction Worker, Police Officer,
Traffic Cone}, {Pushable Pullable, Debris, Stroller, Personal Mobility,
Emergency Vehicle}

We use the class groups proposed by prior works [72, 80] for the standard bench-
mark and adapt this grouping for LT3D. Our proposed group-free detector head
architecture consistently outperforms grouping-based approaches on both the stan-

dard and LT3D benchmarks. We note that sub-optimal grouping strategies (such as
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Table 4.7: Group-Free vs. Group-Based Architecture. Our proposed group-free
detector head architecture consistently outperforms grouping-based approaches on both
the standard and LT3D benchmarks. We note that sub-optimal grouping strategies (such
as those adopted for LT3D) may yield significantly diminished performance, whereas opti-
mized grouping strategies (such as those adopted for the standard setup) have comparable
performance to the group-free approach. Note, TC is traffic-cone, CV is construction
vehicle, MC is motorcycle, PP is pushable-pullable, CW is construction-worker, and
PO is police-officer. We highlight classes with Medium and Few examples per class in
blue.

CenterPoint MH Car Ped. Barrier TC Truck Bus Trailer CV MC Bicycle

Original v 8717 877 70.7 740 63.6 727 45.1 26.3 64.7 47.9
89.1 88.4 70.8 74.3 64.8 72,9 420 25.7 65.9 53.6

for LT3D v 824 — 620 60.1 494 557 289 19.7 489 33.6
88.1 — 724 727 62.7 70.8 40.2 24.5 62.8 48.5

Adult PP CW Debris Child Stroller PO EV PM  All

Original A — — = = 640
B — -~ - = =~ — 648

for LT3D v 812 21.7 142 1.1 0.1 0.1 1.3 0.1 0.1 312
86.3 32.7 22.2 4.3 0.1 4.3 1.8 103 0.1 39.2

those adopted for LT3D) may yield significantly diminished performance, whereas
optimized grouping strategies (such as those adopted for the standard setup) have com-
parable performance to the group-free approach. The group-free approach simplifies

architecture design, while also providing competitive performance.

Two insights allow us to train the group-free architecture. First, we make the
group-free head proportionally larger to train more classes. The standard grouping
setup contains 6 heads, each with 64 convolutional filters. Scaling up to the nearest
power of two, our group-free head has 512 convolutional filters. Second, we do not
perform between-class NMS. The standard setup performs NMS between classes in
each group (e.g., since pedestrians and traffic cones are tall and skinny, the model
should only predict that an object is either a traffic cone or a pedestrian). However,
performing NMS between classes requires that confidence scores are calibrated, which
is not the case. Moreover, for LT3D, score calibration becomes more important for

rare classes as these classes have lower confidence scores than common classes on
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Table 4.8: Ablation on Multi-Modal Fusion. Our analysis confirms that 2D RGB are
better suited for late-fusion (c-e vs. f), matching projected 3D LiDAR detections in the 2D
image-plane outperforms matching 2D RGB detections inflated to the 3D BEV, and score
calibration prior to probabilistic fusion improves performance.

Method Many Medium Few A11
(A) CenterPoint [72] 76.4 43.1 3.5 39.2
(B)  + Hierarchy 77.1 45.1 43 404
(C) w/ 3D BEV Filtering w/ FCOS3D 76.6 48.7 8.1 42.9
(D) w/ 3D BEV Filtering w/ BEVFormer 76.9 50.8 6.3 43.2
(E) w/ 3D BEV Filtering w/ PolarFormer 76.8 50.0 6.1 42.8
(F)  w/ 3D BEV Filtering w/ YOLOVT 76.3 44.7 5.8 405
(G)  w/ 2D Img. Filtering using YOLOV?  77.0 51.3 9.8 446
(H) + Score Calibration 77.0 51.2 11.1 45.0
(I + External Data 774 54.6 14.6 47.6
(J) w/ 2D Img. Filtering using DINO 77.8 58.2 18.7 50.5
(K)  + Prob. En. 7.9 59.4 200 514

average, meaning that common objects will likely suppress rare objects within the
same group. Our solution is to only perform within-class NMS, which is standard for
2D detectors [52].

4.5.3 Analysis on Multi-Modal Fusion

We design a set of experiments to study the trade off between using 2D and monocular
3D RGB detectors, and matching in the 2D image and 3D BEV plane. Further, we
examine the impact of using additional data and study different fusion strategies. Our
analysis confirms that 2D RGB are better suited for late-fusion, matching projected
3D LiDAR detections in the 2D image-plane outperforms matching 2D RGB detections
inflated to the 3D BEV, and score calibration prior to probabilistic fusion improves
performance.

How Do We Incorporate RGB Information? Although LiDAR-based
detectors are widely adopted for 3D detection, we find that they produce many

high-scoring false positives (FPs) for rare classes due to misclassification. We focus
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50 DINO w/ nulmage+nuScenes
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Figure 4.4: Correlation Between 2D AP and 3D AP. Although nuScenes is a 3D
detection benchmark, we can generate 2D annotations using the provided sensor extrinsics
by projecting the 3D annotations to the 2D image plane. We find that evaluating 2D
detectors using these 2D nuScenes annotations is a good proxy task (x-axis) that is
positively correlated with the downstream performance of the full late-fusion pipeline
(y-axis). Concretely training 2D detectors with more data (e.g. training with nuScenes
and nulmages), and using stronger 2D detectors (e.g. DINO) improves performance on the
proxy task as well as the downstream late-fusion algorithm.

on removing such FPs. To this end, we use an RGB-based detector to filter out high-
scoring false-positive LIDAR detections by leveraging two insights: (1) LiDAR-based
3D are accurate w.r.t 3D localization and yield high recall (though classification is
poor), and (2) RGB-based 3D-detections are accurate w.r.t recognition (though 3D
localization is poor). We first attempt to filter out 3D LiDAR detections in the BEV
using monocular 3D detections (c.f. Table 4.8C-E). For each RGB-based detection,
we keep LiDAR-based detections within a radius of m meters and remove all the
others (that are not close to any RGB-based detections). Although this provides a
3% performance improvement over the LiDAR-only baseline Table 4.8B), we explore

using 2D detectors as an alternative.

How Do We Match Multi-Modal Detections? We consider matching 3D
LiDAR and 2D RGB detections in both the 3D BEV and 2D image plane. Naively
lifting 2D RGB detections into 3D leads to imprecise depth estimates that leads to
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Figure 4.5: Failure Cases. Both our method (columns 1-3) and TransFusion [2] (columns
4 -5) have the same failure cases. In the first and second row, the 2D RGB-detector DINO
detects the heavily occluded cars but 3D LiDAR-detector fails to detect them. As a result,
the late-fusion predictions miss these cars because our method throws away unmatched
RGB-detections for which we do not have accurate 3D information. In the third row, we see
that although both the LiDAR and RGB detectors fire on the object (whose ground-truth
label is police-officer), LiDAR-detector predicts it as adult and RGB-detector predicts
it as construction-worker. As a result, the final detection is incorrect w.r.t the predicted
categorical label. TransFusion also misclassifies this object and predicts it as an adult.

missed-detections and false positives (Table 4.8F). As shown in Fig. 4.1, matching
3D LiDAR and 2D RGB detections in the 3D BEV does not work well in practice.
Instead, we project the 3D LiDAR detections to the 2D image plane and filter using
IoU (c.f. Table 4.8G). Two detections are considered matched if their spatial overlap
exceeds a fixed threshold. We find that this approach performs considerably better
than either of the approaches that perform fusion in the 3D BEV. Notably, we find
that 2D image filtering with YOLOV7 improves over the 3D BEV filtering with
YOLOVT by 7.1% mAP and improves over the 3D BEV filtering with FCOS3D by
5.6% AP. Using better 2D detectors (e.g. DINO) and training with external data (c.f.
Figure 4.4) yields better performance in both 3D BEV and 2D image based filtering
(Table 4.81-J).

How Do We Fuse Multi-Modal Detections? We evaluate multi-modal fusion
using non-maximal suppression (NMS) and probabilistic ensembling (Prob. En.)
(Table 4.8J vs. Table 4.8K). Prior to fusion, we first project all detections to the
2D image plane and calibrate the scores of LIDAR and RGB detections to ensure
that they are comparable. Next, we pool both RGB and LiDAR detections together
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and match them based on their 2D IoU. If using NMS, only the highest confidence
detections are kept and all lower confidence overlapping detections are removed.
If using Prob. En. we use bayesian fusion to reasoning about the final score of
ovelapping detections. Concretely, if two matched detections fire in the same place,
the fused score should be higher than the individual scores because there is twice the
evidence of an object at that particular spatial location. After score calibration, we
find that Prob. En. achieves 0.5 mAP higher than NMS averaged over all classes.
Notably, Prob. En. provides a considerable 1.3% AP improvement for rare classes.
Failure Cases and Visualizations We visualize common failure cases of our
late-fusion approach and compare it with the failure cases of TransFusion, an end-
to-end trained multi-modal detector. We find that our method fails in cases of
occlusions (where there is no 3D information) and in cases where the 2D RGB-

detector misclassifies the object. See Figure 4.5 for detailed analysis.
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Conclusion

In this work, we explore the problem of long-tailed 3D detection (LT3D), detecting
objects not only from common classes but also from many rare classes. This problem
is motivated by the operational safety of autonomous vehicles (AVs), but has broad
applications, (e.g., elder-assistive robots [54] that fetch diverse items [17] should
address LT3D). To study LT3D, we establish rigorous evaluation protocols that allow
for partial credit to better diagnose 3D detectors. We propose several algorithmic
innovations to improve LT3D, including a group-free detector head, hierarchical losses
that promote feature sharing across long-tailed classes, and a simple multimodal fusion
method that effectively combines 2D RGB-based and 3D LiDAR-based detections,
achieving significant improvements for LT3D. We find that 2D RGB detectors are
better suited for late-fusion than monocular 3D RGB detectors, matching projected
3D LiDAR detections in the 2D image-plane outperforms matching 2D RGB detections
inflated to the 3D BEV, and score claibration prior to probabilistic fusion yields
better results. Our simple late-fusion approach achieves state-of-the-art performance,
improving over prior work by 12.2% mAP.

Limitations. LT3D emphasizes object detection for rare classes which can
be safety-critical for downstream AV tasks such as motion planning and collision
avoidance. However, our work does not study how solving LT3D directly affects
these tasks. Another limitation, shared by contemporary benchmarks, is that our
setup does not consider the correlation between individual classes. For example, the

rare-class stroller is often pushed by an adult. One may argue that detecting
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adult is sufficient for safe navigation. However, edge cases can occur in the real
world where a stroller can be unattended.

Future Work. LT3D remains a challenging problem that requires further study
by the community. Building end-to-end multi-modal models that leverages the design
principles outlined in this paper may achieve better results. Further, leveraging
temporal information to interpolate missed-detections and remove false positives
in each modality can help improve late-fusion. Recent work in large-scale vision
language models [31, 78] show promising zero-shot results in detecting rare classes.
Identifying ways of incorporating foundation models into our late-fusion framework can
greatly improve LT3D. Lastly, future should consider how LT3D impacts downstream

forecasting and motion planning tasks.
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