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Abstract

This report introduces an enhanced method for the Foun-
dational Few-Shot Object Detection (FSOD) task, lever-
aging the vision-language model (VLM) for object detec-
tion. However, on specific datasets, VLM may encounter the
problem where the detected targets are misaligned with the
target concepts of interest. This misalignment hinders the
zero-shot performance of VLM and the application of fine-
tuning methods based on pseudo-labels. To address this
issue, we propose the VLM+ framework, which integrates
the multimodal large language model (MM-LLM). Specif-
ically, we use MM-LLM to generate a series of referential
expressions for each category. Based on the VLM predic-
tions and the given annotations, we select the best referen-
tial expression for each category by matching the maximum
IoU in training set. Subsequently, we use these referential
expressions to generate pseudo-labels for all images in the
training set and then combine them with the original la-
beled data to fine-tune the VLM. Additionally, we employ
iterative pseudo-label generation and optimization to fur-
ther enhance the performance of the VLM. Our approach
achieve 32.56 mAP in the final test.

1. Introduction

Deep learning techniques have garnered widespread at-
tention across multiple research fields. [7, 9, 6, 8]. Object
detection, as a fundamental task in computer vision, has
garnered extensive research. Traditional visual recognition
models are typically trained to predict a fixed set of prede-
fined object categories, which limits their usability in real-
world applications, as additional labeled data is required to
generalize to new visual concepts and domains. To address
this issue, some open-set object detection methods have
been proposed, such as GLIP [3] and Grounding DINO [4].
These methods reframe object detection as a phrase-based
task and introduce contrastive training between object re-
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Figure 1: By specifying the interested classes in textual
prompts, VLMs can implement zero-shot object detection.
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Figure 2: Poor Alignment Between VLM and Class
Prompts. In the nuImages dataset, barriers are defined as
road barricades (in red), while the obstacles predicted by
the VLMs include roadside steps (in blue).

gions and language phrases. Due to their excellent align-
ment between textual and visual features, these models are
capable of performing object detection based on the pro-
vided prompts in a zero-shot manner, as illustrated in Fig-
ure 1.

However, for specific target applications such as au-
tonomous vehicle perception [2], these foundational mod-
els may still be suboptimal. This is primarily due to the
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Figure 3: The framework of VLM+.

challenge of aligning the foundational models with spe-
cific target concepts as shown in Figure 2. Under the Few-
Shot Object Detection setting in [5], this misalignment can
have a significant impact on methods that rely on predict-
ing pseudo-labels for images. Therefore, our goal is to
reduce the gap in understanding between visual and tex-
tual concepts by the VLM, thereby minimizing the poten-
tial for generating erroneous pseudo-labels. We propose
a multi-stage approach named VLM+. Specifically, we
first input images with annotations for each category into a
MM-LLM [10]. Here, we use GPT-4 [1] to generate key-
word prompts for these categories. Then, we randomly
combine these prompts as referential expressions for the
vision-language object detection model to obtain an opti-
mal referential expression for each category, thereby en-
hancing the foundational model’s understanding of the tar-
get concepts. Finally, we utilize the acquired referential
expressions as textual input to improve the generation of
pseudo-labels for each category. These pseudo-labels are
then employed alongside the original labeled data as anno-
tation data for the VLMs. Additionally, the trained model
can be reused for pseudo-label generation and further op-
timization. The object detection VLMs we utilize com-
prise Grounding DINO and GLIP, with the corresponding
pre-trained weights available at: https://github.com/open-
mmlab/mmdetection/tree/main.

2. Method

2.1. VLMs

2.1.1 GLIP

Open-set object detection is trained using existing bounding
box annotations and aims to detect arbitrary classes through

language generalization. GLIP [3] considers the object de-
tection task as a context-free phrase localization task, while
phrase localization can be viewed as a context-aware object
detection task. As a result, both can be improved within the
same framework.

2.1.2 Grounding DINO

Grounding DINO [4] is an open-set object detector
that merges the Transformer-based detector DINO with
grounded pre-training. This fusion enables the detection
of arbitrary objects specified by human input, like category
names or referring expressions. Grounding DINO lies in its
feature fusion strategy across various stages of the detec-
tion pipeline. These include feature enhancers, text-guided
query selection, and cross-modal decoders, effectively inte-
grating textual and visual information.

2.2. VLMs+

2.2.1 Concept Alignment

Regarding the misalignment between VLM and target con-
cepts, we attribute it to the ambiguity and insufficient ex-
pression of category concepts. Therefore, to address this
issue, we propose utilizing the image-to-text generation ca-
pabilities of a multimodal large language model to generate
referential expressions that align with these concepts, in-
stead of relying solely on class names, as depicted in Figure
3, labeled 1. Specifically, we overlay the annotation bound-
ing box from the training set onto the corresponding im-
ages and set the prompt as: “Please provide five descriptive
terms for the object within the red box.” as input of MM-
LLM. Then, we can obtain a set of descriptive prompts for
each category. Leveraging the language comprehension and
vision-language alignment abilities of the vision-language
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Class index (c) Class Name Referential Expression (T c
i∗ ) ACC (before) ACC (after)

1 car car 1.0 1.0
2 truck lorry 0.6 0.7
3 construction vehicle lift shovel excavator 0.9 0.9
4 bus bus 0.9 0.9
5 trailer large cargo box on the trailer 0.6 0.8
6 emergency emergency police wagon 0.4 0.6
7 motorcycle narrow motorcycle 0.8 0.8
8 bicycle bicycle bike 0.9 1.0
9 adult adult people 0.4 0.7
10 child single little short youth children 0.6 0.7
11 police officer traffic policeman 0.4 0.6
12 construction worker construction workman people 0.5 0.7
13 personal mobility small kick scooter 0.3 0.9
14 stroller stroller 1.0 1.0
15 pushable pullable pushable pullable garbage container 0.5 1.0
16 barrier single short tarp barrier 0.3 0.5
17 traffic cone traffic cone 1.0 1.0
18 debris indicator warning board with wooden frame 0.0 0.7

Table 1: Each class name, along with its corresponding referential expression. The VLM used is Grounding DINO. Bold
indicates improved performance.

model, we randomly combine five prompts into N referen-
tial expressions. These expressions serve as inputs to the
VLM, with the aim of selecting the best referential expres-
sion for the class name. Below, we will discuss the process
of selecting the optimal reference expression in detail.

Let T c
i and P c

i,j denote the i-th referential expression of
the c-th class and the bounding box positions of the j-th im-
age obtained after processing T c

i through the VLMs, respec-
tively. Bc

j represents the the j-th ground-truth bounding box
of the c-th class, where c = 1, 2, . . . , 18, i = 1, 2, . . . , N ,
and j = 1, 2, . . . , 10. To start, we compute the Intersection
over Union (IoU) for each P c

i,j with Bc
j :

IoU(P c
i,j , B

c
j ) =

|P c
i,j ∩Bc

j |
|P c

i,j ∪Bc
j |

To calculate the prediction accuracy of VLMs under the
current referential expression, we first define an indicator
function to check if the IoU is greater than 50%:

1IoU(P c
i,j ,B

c
j )>0.5 =

{
1, if IoU(P c

i,j , B
c
j ) > 0.5

0, otherwise

Next, we define the accuracy for each set of bounding
boxes as:

ACC(P c
i,j , B

c
j ) =

1

10

10∑
j=1

1IoU(P c
i,j ,B

c
j )>0.5

We then find the set of bounding boxes with the highest
accuracy:

i∗ = arg max
i=1,...,N

ACC(P c
i,j)

Finally, we select the referential expression T c
i∗ as the

best referential expression for c-th class name. As shown
in Table 1, we present the best referential expression ob-
tained by the VLM for each class name. Additionally, we
demonstrate the improvements in prediction accuracy of
VLM for each category before and after using referential
expressions. We can observe significant improvements in
the recognition ability for classes such as “personal mobil-
ity”, “debris”, “pushable pullable” and “trailer”. This sig-
nificantly improves the model’s predictive performance on
categories within a specific dataset, and holds the promise
of generating higher-quality pseudo-labels for subsequent
model training, thereby achieving better fine-tuning results.

2.2.2 Iterative Pseudo-label Optimization

For the federated dataset provided by the competition,
we implement the iterative pseudo-label optimization ap-
proach. Iterative pseudo-label optimization involve a pro-
cess where pseudo-labels, predicted labels assigned to un-
labeled data by the VLMs, are iteratively generated and re-
fined. If the confidence score of the label generated by the
model for a category exceeds pseudo-label threshold η, we
consider it as pseudo-labeled data for this category. Below,
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we outline the detailed process of iterative pseudo-label op-
timization.

1. Initial Pseudo-Label Generation: Initially, pseudo-
labels are generated for unlabeled data using the ini-
tial model and referential expressions. These pseudo-
labels serve as initial labels for the unlabeled data.

2. Model Training: The model is then trained on both la-
beled data with ground truth labels and pseudo-labels.
This training process aims to improve the model’s per-
formance using the combined labels.

3. Pseudo-Label Refinement: After training, the
model’s predictions on unlabeled data are updated
based on the new model parameters. These updated
predictions serve as refined pseudo-labels for the next
iteration.

4. Iteration: Steps 2 and 3 are repeated iteratively, with
the model being retrained on the combined labels and
the pseudo-labels being refined in each iteration. This
iterative process continues until a convergence crite-
rion is met or a predefined number of iterations is
reached.

2.2.3 Loss Function

The loss functions for Grounding DINO and GLIP include
Focal Loss, box L1 loss, and GIOU loss. The weights for
these losses are set to 1.0 for Focal Loss, 5.0 for box L1 loss,
and 2.0 for GIOU loss. For Grounding DINO, similar to the
DETR model, we add auxiliary losses after each decoder
layer and encoder output.

Methods mAP

Baseline (Best) 21.51

GLIP (zero-shot) 15.73

GLIP + 27.27

Grounding DINO (zero-shot) 19.91

Grounding DINO + 32.56

Table 2: Comparison of VLM and VLM+.

3. Experiment
Dataset. The train and test datasets are provided by the

organizers of the Foundational Few-Shot Object Detection
Challenge.

Implementation Detail. We use ChatGPT-4 to gener-
ate 5 relevant prompt descriptions for each class. For the

(a) left: pushable pullable; right: pushable pullable garbage con-
tainer (33139.jpg)

(b) left: pushable pullable; right: pushable pullable garbage con-
tainer (59104.jpg)

(c) left: personal mobility; right: small kick scooter (2283.jpg)

(d) left: personal mobility; right: small kick scooter (5153.jpg)

(e) left: debris; right: indicator warning board with wooden frame
(15429.jpg)

(f) left: debris; right: indicator warning board with wooden frame
(15937.jpg)

Figure 4: Visualizing examples: Given referential expres-
sions about categories, VLMs can better detect new entities.

pseudo-label threshold η, we set it to 0.3. The GLIP pre-
training weights are selected from: mmdetection: GLIP-L,
which is pre-trained on the FourODs, GoldG, CC3M+12M,
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and SBU datasets. The Grounding DINO pre-trained
weights are selected from: mmdetection: MM-Grounding-
DINO-L*, which is pre-trained on the O365V2, OpenIm-
ageV6, GoldG, V3det, COCO2017, LVISV1, COCO2014,
GRIT, RefCOCO, RefCOCO+, RefCOCOg, and gRef-
COCO datasets.

Result. To validate the effectiveness of our approach,
we apply VLM+ to both the pre-trained GLIP and Ground-
ing DINO models. As depicted in Table 2, the Grounding
DINO model exhibits satisfactory performance in a zero-
shot manner, owing to its extensive pre-trained on large
datasets. However, as illustrated in Table 1, VLM struggles
to effectively understand certain class names when they are
input as text. For example, the model’s prediction accuracy
for the term ”debris” is 0. Conversely, utilizing modified
referential expressions as input significantly enhances the
prediction performance for this category. The incorporation
of VLM+ leads to a notable improvement in performance,
showcasing the effectiveness of our approach.

Case Study. We achieve improved performance by sub-
stituting category names with referential expressions as in-
put text for VLMs. As illustrated in Figure 4, the original
terms ”personal mobility” and ”pushable pullable” fail to
accurately capture the semantic meaning of the objects, re-
sulting in incorrect predictions by the VLM. Moreover, for
the ”debris” category, the model fails to generate any pre-
dictions, indicating a very low confidence level in this cat-
egory. However, utilizing enhanced referential expressions
for these categories as text prompts effectively mitigates the
concept misalignment issues.

4. Conclusion
This report summarize our solution for the Foundational

Few-Shot Object Detection Challenge (2024). By combin-
ing MM-LLM and VLMs, and utilizing a maximum IoU
matching algorithm, we identify a referential expression
aligned with the image concept for each category. Subse-
quently, we employ iterative pseudo-label generation and
model optimization under these referential expressions. The
final competition results demonstrate the effectiveness of
our solution.
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